Spectrally Stable Encapsulated Vortices for Nonlinear Schrödinger Equations

Summary. A large class of multidimensional nonlinear Schrodinger equations admit localized nonradial standing-wave solutions that carry nonzero intrinsic angular momentum. Here we provide evidence that certain of these spinning excitations are spectrally stable. We find such waves for equations in two space dimensions with focusing-defocusing nonlinearities, such as cubic-quintic. Spectrally stable waves resemble a vortex (nonlocalized solution with asymptotically constant amplitude) cut off at large radius by a kink layer that exponentially localizes the solution. For the evolution equations linearized about a localized spinning wave, we prove that unstable eigenvalues are zeroes of Evans functions for a finite set of ordinary differential equations. Numerical computations indicate that there exist spectrally stable standing waves having central vortex of any degree.

[1]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[2]  Henry A. Warchall,et al.  Nonradial Solutions of a Semilinear Elliptic Equation in Two Dimensions , 1993, patt-sol/9309001.

[3]  R. Pego Compactness in ² and the Fourier transform , 1985 .

[4]  John C. Neu,et al.  Vortices in complex scalar fields , 1990 .

[5]  G. Stegeman,et al.  Stable self trapping and ring formation in polydiacetylene para-toluene sulfonate , 1995, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[6]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[7]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[8]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[9]  F. Weissler,et al.  Localized Solutions of Sublinear Elliptic Equations: Loitering at the Hilltop , 1997 .

[10]  B. Malomed,et al.  Three-dimensional spinning solitons in the cubic-quintic nonlinear medium. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[12]  J. Alexander,et al.  LINEAR INSTABILITY OF SOLITARY WAVES OF A BOUSSINESQ-TYPE EQUATION: A COMPUTER ASSISTED COMPUTATION , 1999 .

[13]  B. Malomed,et al.  Stable localized vortex solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[15]  Joseph B. Keller,et al.  Stability of periodic plane waves , 1987 .

[16]  Boris A. Malomed,et al.  Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity , 2000 .

[17]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[18]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[19]  Dmitry V. Skryabin,et al.  Optical Solitons Carrying Orbital Angular Momentum , 1997 .

[20]  B. Malomed,et al.  Stable vortex solitons in the two-dimensional Ginzburg-Landau equation. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Anders Berntson,et al.  Analysis of stable self-trapping of laser beams in cubic-quintic nonlinear media , 1998 .

[22]  W. H. Reid,et al.  An initial value method for eigenvalue problems using compound matrices , 1979 .

[23]  Myoungsik Cha,et al.  Measurement of the complex nonlinear refractive index of single crystal p‐toluene sulfonate at 1064 nm , 1994 .

[24]  Humberto Michinel,et al.  Stable azimuthal stationary state in quintic nonlinear optical media , 1997 .

[25]  Myoungsik Cha,et al.  Large purely refractive nonlinear index of single crystal P-toluene sulphonate (PTS) at 1600 nm , 1994 .

[26]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[27]  Lederer,et al.  Azimuthal instability of spinning spatiotemporal solitons , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  C. De Angelis,et al.  Self-trapped propagation in the nonlinear cubic-quintic Schrodinger equation: a variational approach , 1994 .

[29]  Henry A. Warchall,et al.  Encapsulated-vortex solutions to equivariant wave equations existence , 1999 .

[30]  T. Bridges,et al.  Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Boris A. Malomed,et al.  Stability of spinning ring solitons of the cubic–quintic nonlinear Schrödinger equation , 2001, nlin/0109013.

[32]  G I Stegeman,et al.  Two-dimensional bright spatial solitons stable over limited intensities and ring formation in polydiacetylene para-toluene sulfonate. , 1998, Optics letters.