The changing radiative forcing of fires: global model estimates for past, present and future

Abstract. Fires are a global phenomenon that impact climate and biogeochemical cycles, and interact with the biosphere, atmosphere and cryosphere. These impacts occur on a range of temporal and spatial scales and are difficult to quantify globally based solely on observations. Here we assess the role of fires in the climate system using model estimates of radiative forcing (RF) from global fires in pre-industrial, present day, and future time periods. Fire emissions of trace gases and aerosols are derived from Community Land Model simulations and then used in a series of Community Atmosphere Model simulations with representative emissions from the years 1850, 2000, and 2100. Additional simulations are carried out with fire emissions from the Global Fire Emission Database for a present-day comparison. These results are compared against the results of simulations with no fire emissions to compute the contribution from fires. We consider the impacts of fire on greenhouse gas concentrations, aerosol effects (including aerosol effects on biogeochemical cycles), and land and snow surface albedo. Overall, we estimate that pre-industrial fires were responsible for a RF of −1 W m−2 with respect to a pre-industrial climate without fires. The largest magnitude pre-industrial forcing from fires was the indirect aerosol effect on clouds (−1.6 W m−2). This was balanced in part by an increase in carbon dioxide concentrations due to fires (+0.83 W m−2). The RF of fires increases by 0.5 W m−2 from 1850 to 2000 and 0.2 W m−2 from 1850 to 2100 in the model representation from a combination of changes in fire activity and changes in the background environment in which fires occur, especially increases and decreases in the anthropogenic aerosol burden. Thus, fires play an important role in both the natural equilibrium climate and the climate perturbed by anthropogenic activity and need to be considered in future climate projections.

[1]  S. Freitas,et al.  Biomass Burning in Amazonia: Emissions, Long‐Range Transport of Smoke and Its Regional and Remote Impacts , 2013 .

[2]  Brent N. Holben,et al.  Aerosol Particles in Amazonia: Their Composition, Role in the Radiation Balance, Cloud Formation, and Nutrient Cycles , 2013 .

[3]  J. Randerson,et al.  Global impact of contemporary smoke aerosols from landscape fires on climate and the Hadley circulation , 2012 .

[4]  G. Mann,et al.  Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate , 2012 .

[5]  Richard Neale,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 , 2012 .

[6]  J. Lamarque,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model , 2012 .

[7]  Andrew Gettelman,et al.  The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model , 2012 .

[8]  Michael Brauer,et al.  Estimated Global Mortality Attributable to Smoke from Landscape Fires , 2012, Environmental health perspectives.

[9]  Crystal B. Schaaf,et al.  Radiative forcing of natural forest disturbances , 2012 .

[10]  Qiaoqiao Wang,et al.  Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing , 2011 .

[11]  N. Mahowald Aerosol Indirect Effect on Biogeochemical Cycles and Climate , 2011, Science.

[12]  J. Randerson,et al.  Biomass burning contribution to black carbon in the Western United States Mountain Ranges , 2011 .

[13]  M. Luo,et al.  Impacts of 2006 Indonesian fires and dynamics on tropical upper tropospheric carbon monoxide and ozone , 2011 .

[14]  J. Lamarque,et al.  Aerosol Impacts on Climate and Biogeochemistry , 2011 .

[15]  James T. Randerson,et al.  The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN , 2011 .

[16]  P. J. Rasch,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in CESM , 2011 .

[17]  P. Friedlingstein,et al.  Modeling fire and the terrestrial carbon balance , 2011 .

[18]  R. Neilson,et al.  Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest , 2011 .

[19]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[20]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[21]  P. Rasch,et al.  Direct and semidirect aerosol effects of southern African biomass burning aerosol , 2011 .

[22]  N. O'Neill,et al.  Empirical determinations of the longwave and shortwave radiative forcing efficiencies of wildfire smoke , 2011 .

[23]  E. Kassianov,et al.  Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF , 2011 .

[24]  David J. Diner,et al.  Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia , 2011 .

[25]  G. Stephens,et al.  Aerosol Indirect Effects on Tropical Convection Characteristics under Conditions of Radiative-Convective Equilibrium , 2011 .

[26]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[27]  Carolien Kroeze,et al.  The global nitrous oxide budget revisited , 2011 .

[28]  S. Veraverbeke,et al.  A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT) , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[29]  S. Klein,et al.  Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M‐PACE observations , 2011 .

[30]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[31]  E. Wilcox Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol , 2010 .

[32]  Vivek K. Arora,et al.  Uncertainties in the 20th century carbon budget associated with land use change , 2010 .

[33]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[34]  Michael J. Prather,et al.  Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry , 2010, Science.

[35]  S. K. Akagi,et al.  Emission factors for open and domestic biomass burning for use in atmospheric models , 2010 .

[36]  D. Shindell,et al.  Driving forces of global wildfires over the past millennium and the forthcoming century , 2010, Proceedings of the National Academy of Sciences.

[37]  Pierre Friedlingstein,et al.  Carbon–climate feedbacks: a review of model and observation based estimates , 2010 .

[38]  S. Klein,et al.  Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model , 2010 .

[39]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[40]  J. Randerson,et al.  Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model , 2010 .

[41]  D. Koch,et al.  Black carbon semi-direct effects on cloud cover: review and synthesis , 2010 .

[42]  Odelle L. Hadley Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat , 2010 .

[43]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[44]  Douglas C. Morton,et al.  Nitrogen deposition in tropical forests from savanna and deforestation fires , 2010 .

[45]  Sandy P. Harrison,et al.  The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model , 2010 .

[46]  F. M. Hoffman,et al.  Fire dynamics during the 20th century simulated by the Community Land Model , 2010 .

[47]  W. Landman Climate change 2007: the physical science basis , 2010 .

[48]  D. Lawrence,et al.  The contribution of snow condition trends to future ground climate , 2010 .

[49]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[50]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[51]  N. Mahowald,et al.  Impacts of atmospheric nutrient inputs on marine biogeochemistry , 2010 .

[52]  D. Koch,et al.  Black carbon semidirect effects on cloud cover : review and synthesis , 2010 .

[53]  Daniel Orlikowski,et al.  Black carbon aerosols and the third polar ice cap , 2009 .

[54]  M. Chin,et al.  Evaluation of black carbon estimations in global aerosol models , 2009 .

[55]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[56]  J. Randerson,et al.  Do biomass burning aerosols intensify drought in equatorial Asia during El Niño , 2009 .

[57]  Wolfgang Knorr,et al.  Is the airborne fraction of anthropogenic CO2 emissions increasing? , 2009 .

[58]  J. Randerson,et al.  Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model , 2009 .

[59]  D. L. Nelson,et al.  Smoke injection heights from fires in North America: analysis of 5 years of satellite observations , 2009 .

[60]  X. Zeng,et al.  Improving the treatment of the vertical snow burial fraction over short vegetation in the NCAR CLM3 , 2009 .

[61]  M. Krawchuk,et al.  Implications of changing climate for global wildland fire , 2009 .

[62]  David G. Streets,et al.  Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements , 2009 .

[63]  K. Lindsay,et al.  Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry , 2009 .

[64]  J. Lamarque,et al.  Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) , 2009 .

[65]  J. Lamarque,et al.  Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction , 2009 .

[66]  V. Brovkin,et al.  Atmospheric lifetime of fossil-fuel carbon dioxide , 2009 .

[67]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[68]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[69]  Xubin Zeng,et al.  Impact of Modified Richards Equation on Global Soil Moisture Simulation in the Community Land Model (CLM3.5) , 2009 .

[70]  X. Zeng,et al.  Effects of soil wetness, plant litter, and under‐canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5) , 2009 .

[71]  J. Randerson,et al.  Climate regulation of fire emissions and deforestation in equatorial Asia , 2008, Proceedings of the National Academy of Sciences.

[72]  William J. Collins,et al.  Toward a minimal representation of aerosol direct and indirect effects: model description and evaluation , 2011 .

[73]  Thomas H. Painter,et al.  Springtime warming and reduced snow cover from carbonaceous particles , 2008 .

[74]  William J. Collins,et al.  Multimodel estimates of intercontinental source-receptor relationships for ozone pollution , 2008 .

[75]  G. Pfister,et al.  Impacts of the fall 2007 California wildfires on surface ozone: Integrating local observations with global model simulations , 2008 .

[76]  F. Joos,et al.  Climate and human influences on global biomass burning over the past two millennia , 2008 .

[77]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[78]  Michael L. Goulden,et al.  Age‐dependent response of boreal forest to temperature and rainfall variability , 2008 .

[79]  J. Peischl,et al.  Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions , 2008 .

[80]  Meinrat O. Andreae,et al.  Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols , 2008 .

[81]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[82]  J. Randerson,et al.  Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations , 2008 .

[83]  John A. Smith,et al.  Modeling the transport and optical properties of smoke plumes from South American biomass burning , 2008 .

[84]  K. Oleson,et al.  An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities , 2008 .

[85]  Jean-Francois Lamarque,et al.  Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change , 2008 .

[86]  Scott C. Doney,et al.  Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2 , 2008 .

[87]  Peter E. Thornton,et al.  Improvements to the Community Land Model and their impact on the hydrological cycle , 2008 .

[88]  K. Oleson,et al.  Use of FLUXNET in the Community Land Model development , 2008 .

[89]  David M. Lawrence,et al.  Incorporating organic soil into a global climate model , 2008 .

[90]  J. Penner,et al.  Global modeling analysis of tropospheric ozone and its radiative forcing from biomass burning emissions in the twentieth century , 2007 .

[91]  M. Chin,et al.  Sensitivity of global CO simulations to uncertainties in biomass burning sources , 2007 .

[92]  Peter E. Thornton,et al.  Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability , 2007 .

[93]  Zong-Liang Yang,et al.  An observation-based formulation of snow cover fraction and its evaluation over large North American river basins , 2007 .

[94]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[95]  H. Hanson Marine stratocumulus climatologies , 2007 .

[96]  John Methven,et al.  Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the , 2007 .

[97]  Simon Scheiter,et al.  Effects of four decades of fire manipulation on woody vegetation structure in Savanna. , 2007, Ecology.

[98]  John A. Smith,et al.  Modeling the transport and optical properties of smoke aerosols from African savanna fires during the Southern African Regional Science Initiative campaign (SAFARI 2000) , 2007 .

[99]  M. Follows,et al.  Ocean‐atmosphere partitioning of anthropogenic carbon dioxide on centennial timescales , 2007 .

[100]  Kees Klein Goldewijk,et al.  Biogeophysical effects of land use on climate : Model simulations of radiative forcing and large-scale temperature change , 2007 .

[101]  Louisa Emmons,et al.  Ozone production from the 2004 North American boreal fires , 2006 .

[102]  V. Ramaswamy,et al.  On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location , 2007 .

[103]  Philip J. Rasch,et al.  Present-day climate forcing and response from black carbon in snow , 2006 .

[104]  J. Randerson,et al.  The Impact of Boreal Forest Fire on Climate Warming , 2006, Science.

[105]  Alan G. Barr,et al.  The effect of post-fire stand age on the boreal forest energy balance , 2006 .

[106]  A. Stohl,et al.  Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006 , 2006 .

[107]  Keith W. Oleson,et al.  Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations , 2006 .

[108]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[109]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[110]  S. Malyshev,et al.  The underpinnings of land‐use history: three centuries of global gridded land‐use transitions, wood‐harvest activity, and resulting secondary lands , 2006 .

[111]  Charles S. Zender,et al.  Linking snowpack microphysics and albedo evolution , 2006 .

[112]  W. G. Strand,et al.  Climate Change Projections for the Twenty-First Century and Climate Change Commitment in the CCSM3 , 2006 .

[113]  D. Jacob,et al.  Climate projections for the 21st century , 2006 .

[114]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[115]  Michael Oppenheimer,et al.  Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors , 2005 .

[116]  Vivek K. Arora,et al.  Fire as an interactive component of dynamic vegetation models , 2005 .

[117]  J. Randerson,et al.  Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition , 2005 .

[118]  Peter E. Thornton,et al.  Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition , 2005 .

[119]  S. Bonnet,et al.  Biomass burning as a source of dissolved iron to the open ocean? , 2005 .

[120]  Yves M. Govaerts,et al.  Radiative effect of surface albedo change from biomass burning , 2005 .

[121]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[122]  J. Randerson,et al.  Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective , 2005 .

[123]  D. Roy,et al.  Fire‐induced albedo change and its radiative forcing at the surface in northern Australia , 2005 .

[124]  O. Boucher,et al.  Aerosol optical depths and direct radiative perturbations by species and source type , 2005 .

[125]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[126]  C. Zender,et al.  Snowpack radiative heating: Influence on Tibetan Plateau climate , 2005 .

[127]  F. Woodward,et al.  The global distribution of ecosystems in a world without fire. , 2004, The New phytologist.

[128]  P. Bergamaschi,et al.  European Geosciences Union Atmospheric Chemistry , 2004 .

[129]  M. Turetsky,et al.  Historical burn area in western Canadian peatlands and its relationship to fire weather indices , 2004 .

[130]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[131]  Mark Z. Jacobson,et al.  The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning , 2004 .

[132]  G. Brasseur,et al.  Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data , 2004 .

[133]  L. Hutley,et al.  Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia , 2003 .

[134]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[135]  E. Nilsson,et al.  Laboratory simulations and parameterization of the primary marine aerosol production , 2003 .

[136]  J. Seinfeld,et al.  Impact of biomass burning on cloud properties in the Amazon Basin , 2003 .

[137]  Bernard Pinty,et al.  Impact of fires on surface albedo dynamics over the African continent , 2002 .

[138]  J. Penner,et al.  Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations , 2002 .

[139]  R. Dickinson,et al.  The land surface climatology of the community land model coupled to the NCAR community climate model , 2002 .

[140]  D. Fuller,et al.  Land Cover, Rainfall and Land-Surface Albedo in West Africa , 2002 .

[141]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[142]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[143]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[144]  Hajime Akimoto,et al.  Indirect long‐term global radiative cooling from NOx Emissions , 2001 .

[145]  K. Shine Radiative Forcing of Climate Change , 2000 .

[146]  O. Wild,et al.  Excitation of the primary tropospheric chemical mode in a global three-dimensional model , 2000 .

[147]  G. Carmichael,et al.  Impacts of biomass burning on tropospheric CO, NOx, and O3 , 2000 .

[148]  Claire Granier,et al.  The Impact of Biomass Burning on the Global Budget of Ozone and Ozone Precursors , 2000 .

[149]  S. Loftin,et al.  Response of 2 semiarid grasslands to cool-season prescribed fire. , 2000 .

[150]  Houghton,et al.  The U.S. Carbon budget: contributions from land-Use change , 1999, Science.

[151]  Xin-Zhong Liang,et al.  Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies , 1999 .

[152]  C. Kroeze,et al.  Closing the global N2O budget: A retrospective analysis 1500–1994 , 1999 .

[153]  D. Schimel,et al.  Atmospheric Chemistry and Greenhouse Gases , 1999 .

[154]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[155]  T. Giambelluca,et al.  Observations of Albedo and Radiation Balance over Postforest Land Surfaces in the Eastern Amazon Basin , 1997 .

[156]  M. G. Hodnett,et al.  The Albedo of Amazonian Forest and Ranch Land , 1995 .

[157]  Ian G. Enting,et al.  Future emissions and concentrations of carbon dioxide: Key ocean / atmosphere / land analyses , 1994 .

[158]  T. Wigley,et al.  A simple model for estimating methane concentration and lifetime variations , 1994 .

[159]  I. Wright,et al.  Albedo of tropical grass: A case study of pre‐ and post‐burning , 1994 .

[160]  Fortunat Joos,et al.  Use of a simple model for studying oceanic tracer distributions and the global carbon cycle , 1992 .

[161]  S. Fitzwater,et al.  The case for iron , 1991 .

[162]  W. R. Cofer,et al.  New estimates of nitrous oxide emissions from biomass burning , 1991, Nature.

[163]  P. Crutzen,et al.  Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles , 1990, Science.

[164]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[165]  Peter M. Vitousek,et al.  Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests , 1984 .

[166]  T. Eck,et al.  The albedo of a tropical evergreen forest , 1980 .

[167]  M. Swaine,et al.  A re-assessment of a fire protection experiment in north-eastern Ghana savanna. , 1980 .