A graph minor perspective to network coding: Connecting algebraic coding with network topologies
暂无分享,去创建一个
Xin Wang | Zongpeng Li | Xunrui Yin | Yan Wang | Xiangyang Xue | X. Xue | Zongpeng Li | Xin Wang | Xunrui Yin | Yan Wang
[1] Xin Wang,et al. On benefits of network coding in bidirected networks and hyper-networks , 2012, 2012 Proceedings IEEE INFOCOM.
[2] P. Chou,et al. Low complexity algebraic multicast network codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[3] Zongpeng Li,et al. Information multicast in (pseudo-)planar networks: Efficient network coding over small finite fields , 2013, 2013 International Symposium on Network Coding (NetCod).
[4] R. Koetter,et al. The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[5] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[6] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[7] Zongpeng Li,et al. A Constant Bound on Throughput Improvement of Multicast Network Coding in Undirected Networks , 2009, IEEE Transactions on Information Theory.
[8] Alexander Sprintson,et al. Network Coding in Minimal Multicast Networks , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.
[9] David R. Wood,et al. Disproof of the List Hadwiger Conjecture , 2011, Electron. J. Comb..
[10] Zongpeng Li,et al. Bounding the Coding Advantage of Combination Network Coding in Undirected Networks , 2012, IEEE Transactions on Information Theory.
[11] Reinhard Diestel,et al. Graph Theory , 1997 .
[12] Ivan J. Fair,et al. Density Evolution for Nonbinary LDPC Codes Under Gaussian Approximation , 2009, IEEE Transactions on Information Theory.
[13] Bin Fan,et al. Can Network Coding Help in P2P Networks? , 2006, 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.
[14] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[15] Alexandr V. Kostochka,et al. Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..
[16] Michael Langberg,et al. The encoding complexity of network coding , 2005, ISIT.
[17] Peter Sanders,et al. Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.
[18] D. R. Fulkerson,et al. On edge-disjoint branchings , 1976, Networks.
[19] Christina Fragouli,et al. On average throughput and alphabet size in network coding , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[20] Shuo-Yen Robert Li,et al. Network Coding Theory Via Commutative Algebra , 2009, IEEE Transactions on Information Theory.
[21] Christina Fragouli,et al. Properties of network polynomials , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[22] R. Duffin. Topology of series-parallel networks , 1965 .
[23] Béla Bollobás,et al. Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..
[24] R. Koetter,et al. An algebraic approach to network coding , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[25] Rudolf Ahlswede,et al. Network information flow , 2000, IEEE Trans. Inf. Theory.
[26] Shuo-Yen Robert Li,et al. Linear network coding , 2003, IEEE Trans. Inf. Theory.
[27] Christina Fragouli,et al. Information flow decomposition for network coding , 2006, IEEE Transactions on Information Theory.
[28] Lixia Zhang,et al. Observing the evolution of internet as topology , 2007, SIGCOMM 2007.
[29] Peter Sanders,et al. Polynomial time algorithms for network information flow , 2003, SPAA '03.