Some combinatorial constructions for optical orthogonal codes

Abstract A (v, k, ρ) optical orthogonal code C is a family of (0, 1)-sequences of length v and weight k satisfying the following two properties: (1) ∑0⩽t⩽v−1xtxt + i ⩽ ρ, for any x = (x0, x1, …, xv − 1) ∈ C and any integer i ≢ 0 (mod v); (2) ∑0⩽t⩽v − 1xtyt + i ⩽ ρ, for any x ≠ y in C and any integer i. The study of optical orthogonal codes is motivated by an application in a code-division multiple-access fiber optical channel which requires binary sequences with good correlation properties. In this paper, some combinatorial constructions for optimal (v, k, 1) optical orthogonal codes are developed. The constructions are also used to derive a bulk of new optical orthogonal codes.

[1]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[2]  C. Radhakrishna Rao Finite geometries and certain derived results in theory of numbers , 1944 .

[3]  Haim Hanani,et al.  Balanced incomplete block designs and related designs , 1975, Discret. Math..

[4]  Marco Buratti,et al.  Constructions of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1995, Discret. Math..

[5]  Rudolf Mathon,et al.  Constructions for Cyclic Steiner 2-designs , 1987 .

[6]  J. Q. Longyear A survey of nested designs , 1981 .

[7]  Charles J. Colbourn,et al.  The existence of uniform 5‐GDDs , 1997 .

[8]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[9]  D. A. Preece Nested balanced incomplete block designs , 1967 .

[10]  Steven Furino,et al.  Difference families from rings , 1991, Discret. Math..

[11]  M. Colbourn,et al.  On Cyclic Steiner 2-Designs , 1980 .

[12]  Charles J. Colbourn,et al.  Cyclic Block Designs With Block Size 3 , 1981, Eur. J. Comb..

[13]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[14]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[15]  J A John,et al.  Cyclic Designs , 1987 .

[16]  Tuvi Etzion,et al.  Constructions for optimal constant weight cyclically permutable codes and difference families , 1995, IEEE Trans. Inf. Theory.

[17]  Walter T. Federer Construction of Classes of Experimental Designs Using Transversals in Latin Squares and Hedayat's Sum Composition Method , 1970 .

[18]  Masakazu Jimbo,et al.  On a composition of cyclic 2-designs , 1983, Discret. Math..

[19]  M.J Grannell,et al.  Product constructions for cyclic block designs II. Steiner 2-designs , 1986, J. Comb. Theory, Ser. A.

[20]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[21]  Jr. Hall Combinatorial theory (2nd ed.) , 1998 .

[22]  Rudolf Lide,et al.  Finite fields , 1983 .

[23]  L. D. Baumert Cyclic Difference Sets , 1971 .

[24]  Masakazu Jimbo,et al.  Recursive constructions for cyclic BIB designs and their generalizations , 1993, Discret. Math..

[25]  K. Chen,et al.  Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .

[26]  S. Lang Number Theory III , 1991 .

[27]  Hanfried Lenz,et al.  Design theory , 1985 .

[28]  O. Moreno,et al.  Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .

[29]  S. V. Maric,et al.  Multirate fiber-optic CDMA: system design and performance analysis , 1998 .

[30]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[31]  Charles J. Colbourn,et al.  Concerning difference families with block size four , 1994, Discret. Math..

[32]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[33]  Rose Peltesohn Eine Lösung der beiden Heffterschen Differenzenprobleme , 1939 .

[34]  R. C. Bose ON THE CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS , 1939 .

[35]  M. Buratti Improving two theorems of bose on difference families , 1995 .

[36]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms , 1972, J. Comb. Theory, Ser. A.

[37]  Jawad A. Salehi,et al.  Neuromorphic Networks Based on Sparse Optical Orthogonal Codes , 1987, NIPS.

[38]  C. Colbourn,et al.  Recursive constructions for cyclic block designs , 1984 .

[39]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[40]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .