Intrinsic alignments of galaxies in the Illustris simulation

We study intrinsic alignments (IA) of galaxy image shapes within the Illustris cosmic structure formation simulations. We investigate how IA correlations depend on observable galaxy properties such as stellar mass, apparent magnitude, redshift and photometric type, and on the employed shape measurement method. The correlations considered include the matter densityintrinsic ellipticity (mI), galaxy density-intrinsic ellipticity (dI), gravitational shear-intrinsic ellipticity (GI) and intrinsic ellipticity-intrinsic ellipticity (II) correlations. We find stronger correlations for more massive and more luminous galaxies, as well as for earlier photometric types, in agreement with observations. Moreover, the correlations significantly depend on the choice of shape estimator, even if calibrated to serve as unbiased shear estimators. In particular, shape estimators that down-weight the outer parts of galaxy images produce much weaker IA signals on intermediate and large scales than methods employing flat radial weights. The expected contribution of IA to the observed ellipticity correlation in tomographic cosmic shear surveys may be below one percent or several percent of the full signal depending on the details of the shape measurement method. A comparison of our results to a tidal alignment model indicates that such a model is able to reproduce the IA correlations well on intermediate and large scales, provided the effect of varying galaxy density is correctly taken into account. We also find that the GI contributions to the observed ellipticity correlations could be inferred directly frommeasurements of galaxy density-intrinsic ellipticity correlations, except on small scales, where systematic differences between mI and dI correlations are large.

[1]  L. Miller,et al.  Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN , 2016, 1602.08373.

[2]  R. Mandelbaum,et al.  Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations , 2015, 1510.07024.

[3]  R. Mandelbaum,et al.  Intrinsic alignments of BOSS LOWZ galaxies – II. Impact of shape measurement methods , 2015, 1510.06752.

[4]  L. Miller,et al.  Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation , 2015, 1507.07843.

[5]  H. Hoekstra,et al.  Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations , 2015, 1507.06996.

[6]  H. Hoekstra,et al.  CFHTLenS: weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment , 2015, 1507.04301.

[7]  T. Kitching,et al.  Galaxy Alignments: Theory, Modelling & Simulations , 2015, 1504.05546.

[8]  Alina Kiessling,et al.  Galaxy Alignments: An Overview , 2015, 1504.05456.

[9]  H. Hoekstra,et al.  Galaxy Alignments: Observations and Impact on Cosmology , 2015, 1504.05465.

[10]  C. Frenk,et al.  The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations , 2015, 1504.04025.

[11]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[12]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[13]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): mass–size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology , 2014, 1411.6355.

[14]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[15]  T. D. Matteo,et al.  Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics , 2014, 1409.7297.

[16]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[17]  S. Hilbert,et al.  Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering , 2014, 1405.5888.

[18]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[19]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[20]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[21]  T. D. Matteo,et al.  Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation , 2014, 1403.4215.

[22]  V. Springel,et al.  Erratum: A model for cosmological simulations of galaxy formation physics , 2014 .

[23]  P. Valageas Source-lens clustering and intrinsic-alignment bias of weak-lensing estimators , 2013, 1306.6151.

[24]  H. Hoekstra,et al.  Intrinsic galaxy shapes and alignments – II. Modelling the intrinsic alignment contamination of weak lensing surveys , 2013, 1305.5791.

[25]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[26]  V. Vikram,et al.  The massive end of the luminosity and stellar mass functions: Dependence on the fit to the light profile , 2013, 1304.7778.

[27]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[28]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[29]  P. Schneider,et al.  Intrinsic galaxy shapes and alignments – I. Measuring and modelling COSMOS intrinsic galaxy ellipticities , 2012, 1203.6833.

[30]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[31]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[32]  Rachel Mandelbaum,et al.  Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy–galaxy lensing , 2011, 1110.4107.

[33]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[34]  Volker Springel,et al.  Moving mesh cosmology: numerical techniques and global statistics , 2011, 1109.1281.

[35]  P. Bett Halo shapes from weak lensing: the impact of galaxy–halo misalignment , 2011, 1108.3717.

[36]  Alexie Leauthaud,et al.  Precision simulation of ground-based lensing data using observations from space , 2011, 1107.4629.

[37]  C. Benoist,et al.  EVOLUTION OF GALAXY LUMINOSITY FUNCTION USING PHOTOMETRIC REDSHIFTS , 2011, 1105.5668.

[38]  P. Schneider,et al.  Cosmic shear covariance: the log-normal approximation , 2011, 1105.3980.

[39]  P. Schneider,et al.  A bias in cosmic shear from galaxy selection: results from ray-tracing simulations , 2010, 1010.0010.

[40]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[41]  B. Joachimi,et al.  Intrinsic alignment boosting - Direct measurement of intrinsic alignments in cosmic shear data , 2010, 1003.4211.

[42]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[43]  F. Abdalla,et al.  The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts , 2009, 0911.5347.

[44]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[45]  P. Schneider,et al.  Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing , 2008, 0809.5035.

[46]  S. White,et al.  High-redshift galaxy populations and their descendants , 2008, 0809.4259.

[47]  A. Montero-Dorta,et al.  The SDSS DR6 luminosity functions of galaxies , 2008, 0806.4930.

[48]  P. Schneider,et al.  The removal of shear-ellipticity correlations from the cosmic shear signal , 2008, 0905.0393.

[49]  Peter Schneider,et al.  Sources of contamination to weak lensing three-point statistics: constraints from N-body simulations , 2008, 0802.3978.

[50]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[51]  M. Kitzbichler,et al.  The high‐redshift galaxy population in hierarchical galaxy formation models , 2006, astro-ph/0609636.

[52]  Astronomy,et al.  The spin and shape of dark matter haloes in the Millennium simulation of a Λ cold dark matter universe , 2006, astro-ph/0608607.

[53]  A. Heavens,et al.  Potential sources of contamination to weak lensing measurements: constraints from N-body simulations , 2006, astro-ph/0604001.

[54]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[55]  J. Brinkmann,et al.  Detection of large-scale intrinsic ellipticity—density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys , 2005, astro-ph/0509026.

[56]  Tamara Broderick,et al.  Ellipticity of dark matter haloes with galaxy–galaxy weak lensing , 2005, astro-ph/0507108.

[57]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[58]  P. Hopkins,et al.  Cluster Alignments and Ellipticities in ΛCDM Cosmology , 2004, astro-ph/0409652.

[59]  J. Bailin,et al.  Internal and External Alignment of the Shapes and Angular Momenta of ΛCDM Halos , 2004, astro-ph/0408163.

[60]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[61]  Martin White,et al.  Tomography of Lensing Cross-Power Spectra , 2003, astro-ph/0311104.

[62]  A. Heavens,et al.  Weak lensing with COMBO-17: Estimation and removal of intrinsic alignments , 2003, astro-ph/0310174.

[63]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[64]  J. Brinkmann,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[65]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[66]  P. Schneider,et al.  Separating cosmic shear from intrinsic galaxy alignments: Correlation function tomography , 2002, astro-ph/0209474.

[67]  Catherine Heymans,et al.  Weak gravitational lensing: reducing the contamination by intrinsic alignments , 2002, astro-ph/0208220.

[68]  Y. Mellier,et al.  B-modes in cosmic shear from source redshift clustering , 2001, astro-ph/0112441.

[69]  G. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001, astro-ph/0107431.

[70]  T. Theuns,et al.  Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.

[71]  Ue-Li Pen,et al.  Spin-induced Galaxy Alignments and Their Implications for Weak-Lensing Measurements , 2000, astro-ph/0009052.

[72]  Roger D. Blandford,et al.  Intrinsic and extrinsic galaxy alignment , 2000, astro-ph/0005470.

[73]  R. Croft,et al.  Weak-Lensing Surveys and the Intrinsic Correlation of Galaxy Ellipticities , 2000, astro-ph/0005384.

[74]  A. Heavens,et al.  Intrinsic correlation of galaxy shapes: implications for weak lensing measurements , 2000, astro-ph/0005269.

[75]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[76]  T. Broadhurst,et al.  A Method for Weak Lensing Observations , 1994, astro-ph/9411005.

[77]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[78]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[79]  R. Nichol,et al.  Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys , 2007, astro-ph/0701671.

[80]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .