A Review on Methods and Theories to Describe the Glass Transition Phenomenon: Applications in Food and Pharmaceutical Products

Given the complexity in composition and the various environmental conditions to which foods and pharmaceuticals are exposed during processing and storage, stability, functionality, and quality are key attributes that deserve careful attention. Quality and stability of foods and pharmaceuticals are mainly affected by environmental conditions such as temperature, humidity, and time, and for processing conditions (e.g., shear, pressure) under which they may undergo physical and chemical transformations. Glass transition is a key phenomenon which is useful to understand how external conditions affect physical changes on materials. Consequently, theories that predict and describe the glass transition phenomenon are of a great interest not only for the food industry but also it extends to the pharmaceutical and polymer industries. It is important to emphasize that the materials of relevance in these industries are interchangeably sharing similar issues on functionality and their association with the glass transition phenomenon. Development of new materials and understanding the physicochemical behavior of existing ones require a scientific foundation that translates into safe and high-quality foods, improved quality of pharmaceuticals and nutraceuticals with lower risk to patients, and functional efficacy of polymers used in food and medicinal products. This review addresses the glass transition phenomenon from a kinetics and thermodynamics standpoint by presenting existing models that are able to estimate the glass transition temperature. It also explores traditional and novel methods used for the characterization of the glass transition phenomenon.

[1]  Bernhard Wunderlich,et al.  Thermal Analysis of Polymeric Materials , 2022 .

[2]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space , 1951 .

[3]  M. Peleg A Model of Mechanical Changes in Biomaterials at and around Their Glass Transition , 1994 .

[4]  M. Reading,et al.  Modulated differential scanning calorimetry , 1993 .

[5]  Leslie V. Woodcock,et al.  Glass transition in the hard-sphere model , 1976 .

[6]  M. Madani,et al.  Thermally Stimulated Depolarization Current and Thermal Analysis Studies of Gamma Irradiated Lithium‐Salt/Polymer Electrolyte Blends , 2007 .

[7]  R. Sanderson,et al.  Measurement of thermal parameters and mechanical properties of polymers by atomic force microscopy , 2003 .

[8]  P. J. Lillford,et al.  Glass transitions and the fracture behaviour of gluten and starches within the glassy state , 1995 .

[9]  R. Parker,et al.  Effect of molecular structure and water content on the dielectric relaxation behaviour of amorphous low molecular weight carbohydrates above and below their glass transition. , 2000, Carbohydrate research.

[10]  M. Rahman,et al.  Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: A comparison study , 2007 .

[11]  M. T. Kalichevsky,et al.  Glass transition of gluten. 2: The effect of lipids and emulsifiers. , 1992, International journal of biological macromolecules.

[12]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[13]  U. Bianchi,et al.  Pressure Effects on Glass Transition in Polymers. II. A Study of the Factors Affecting dTg /dP Values , 1967 .

[14]  S. H. Kim,et al.  Determination of the glass transition temperature of polymer/layered silicate nanocomposites from positron annihilation lifetime measurements , 2007 .

[15]  C. Juhasz,et al.  Thermally stimulated discharge currents in polyvinyl butyral films , 1981 .

[16]  H. Levine Amorphous food and pharmaceutical systems , 2002 .

[17]  O. Campanella,et al.  The study of the mechanical impedance of foods and biomaterials to characterize their linear viscoelastic behavior at high frequencies , 2008 .

[18]  L. Mandelkern,et al.  Glassy state transitions of poly-(chlorotrifluoroethylene), poly-(vinylidene fluoride), and their copolymers , 1957 .

[19]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[20]  W. Gotze,et al.  Relaxation processes in supercooled liquids , 1992 .

[21]  M. Galop Characterization of polymers using the thermally stimulated current technique , 1997 .

[22]  Zeren Wang,et al.  A Mechanistic Investigation of An Amorphous Pharmaceutical and Its Solid Dispersions, Part II: Molecular Mobility and Activation Thermodynamic Parameters , 2004, Pharmaceutical Research.

[23]  Y. S. Yang,et al.  The glass transition temperatures of sugar mixtures. , 2006, Carbohydrate research.

[24]  T. Howes,et al.  Measurement of Glass–Rubber Transition Temperature of Skim Milk Powder by Static Mechanical Test , 2005 .

[25]  J. H. Gibbs,et al.  Molecular interpretation of glass temperature depression by plasticizers , 1963 .

[26]  S. Sablani,et al.  Evaluating water activity and glass transition concepts for food stability , 2007 .

[27]  P. Mallon,et al.  Principles and Applications of Positron & Positronium Chemistry , 2003 .

[28]  L. Slade,et al.  Water relationships in starch transitions , 1993 .

[29]  S. Ablett,et al.  The glass transition of amylopectin measured by DSC, DMTA and NMR , 1992 .

[30]  M. Peleg,et al.  INSTRUMENTAL AND SENSORY DETECTION OF SIMULTANEOUS BRITTLENESS LOSS AND MOISTURE TOUGHENING IN THREE PUFFED CEREALS , 1998 .

[31]  R. H. Boyd Relaxation processes in crystalline polymers: molecular interpretation — a review , 1985 .

[32]  E. Leutheusser Dynamical model of the liquid-glass transition , 1984 .

[33]  G. P. Johari,et al.  Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures , 1986 .

[34]  G. Buckton,et al.  The use of inverse gas chromatography and gravimetric vapour sorption to study transitions in amorphous lactose. , 2005, International journal of pharmaceutics.

[35]  H. Pollock,et al.  Modulated differential scanning calorimetry: 4. Miscibility and glass transition behaviour in poly(methyl methacrylate) and poly(epichlorohydrin) blends , 1996 .

[36]  Y. Roos,et al.  Differential Scanning Calorimetry Study of Phase Transitions Affecting the Quality of Dehydrated Materials , 1990 .

[37]  D. Williams,et al.  The use of inverse phase gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation. , 2001, International journal of pharmaceutics.

[38]  A. D. Róz,et al.  The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch , 2007 .

[39]  J. Jagiello,et al.  Inverse gas chromatographic studies on silica : infinite dilution and finite concentration measurements , 1991 .

[40]  S. Sahin,et al.  Physical properties of foods , 2006 .

[41]  M. T. Kalichevsky,et al.  Glass transition of gluten. 1: Gluten and gluten-sugar mixtures. , 1992, International journal of biological macromolecules.

[42]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[43]  T. Kwei The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures , 1984 .

[44]  Arnost Reiser,et al.  On the physical meaning of the Kwei equation for the glass transition temperature of polymer blends , 1989 .

[45]  L. Sperling Introduction to physical polymer science , 1986 .

[46]  P. Flory,et al.  Intrinsic Viscosity Relationships for Polystyrene1 , 1951 .

[47]  P. Mallon,et al.  Introduction to Positron and Positronium Chemistry , 2003 .

[48]  X. D. Chen,et al.  Glass transition and caking of spray‐dried lactose , 1996 .

[49]  J. Kokini,et al.  Determination of Williams–Landel–Ferry constants for a food polymer system: Effect of water activity and moisture content , 2001 .

[50]  F. Dinelli,et al.  Glass transitions of thin polymeric films: Speed and load dependence in lateral force microscopy , 2000 .

[51]  P. Flory,et al.  Statistical thermodynamics of semi-flexible chain molecules , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  J. G. Ribelles,et al.  Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films , 1997 .

[53]  F. N. Kelley,et al.  Viscosity and glass temperature relations for polymer‐diluent systems , 1961 .

[54]  T. Fox Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Poly-mer System , 1956 .

[55]  G. Biroli,et al.  On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. , 2004, Journal of Chemical Physics.

[56]  K. Haraya,et al.  Correlation between the ortho-Positronium Pick-off Annihilation Lifetime and the Free Volume in Molecular Liquids and Polymers , 1992 .

[57]  Peter J. Halley,et al.  Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys , 2003 .

[58]  M. E. Brown,et al.  Introduction to Thermal Analysis: Techniques and applications , 1988 .

[59]  Keiji Tanaka,et al.  Molecular weight dependence of surface dynamic viscoelastic properties for the monodisperse polystyrene film , 1996 .

[60]  E. Donth The Glass Transition , 2001 .

[61]  J. Barandiaran,et al.  Thermally stimulated depolarization current (TSDC) study of molecular motions in the glass-transition region of polyarylate (PAr) , 1986 .

[62]  P. Flory,et al.  Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight , 1950 .

[63]  J. H. Gibbs,et al.  Chain Stiffness and the Lattice Theory of Polymer Phases , 1958 .

[64]  Paul Chen,et al.  Determination of the Glass Transition Temperature of Food Polymers Using Low Field NMR , 1998 .

[65]  L. Slade,et al.  Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. , 1991, Critical reviews in food science and nutrition.

[66]  P. Flory,et al.  The glass temperature and related properties of polystyrene. Influence of molecular weight , 1954 .

[67]  P. Ball Statistical physics: Glasses go critical , 1999, Nature.

[68]  E. Jenckel,et al.  Die Erniedrigung der Einfriertemperatur organischer Gläser durch Lösungsmittel , 1953 .

[69]  Y. Roos,et al.  Stability-related transitions of amorphous foods , 1994 .

[70]  M. E. Brown,et al.  Introduction to Thermal Analysis , 1988 .

[71]  S. Sablani,et al.  Sorption isotherms and the state diagram for evaluating stability criteria of abalone , 2004 .

[72]  H. A. Schneider,et al.  Conformational Entropy Contributions to the Glass Temperature of Blends of Miscible Polymers , 1997, Journal of research of the National Institute of Standards and Technology.

[73]  H. Levine,et al.  Residual water in amorphous solids: Measurement and effects on stability , 2002 .

[74]  Zeren Wang,et al.  A Mechanistic Investigation of an Amorphous Pharmaceutical and Its Solid Dispersions, Part I: A Comparative Analysis by Thermally Stimulated Depolarization Current and Differential Scanning Calorimetry , 2004, Pharmaceutical Research.

[75]  D. Torreggiani,et al.  Water activity and viscosity—relations with glass transition temperatures in model food systems , 1996 .

[76]  U. Bianchi Pressure dependence of glass transition temperature in polymers , 1971 .

[77]  D. Craig,et al.  Characterisation of spray-dried lactose using modulated differential scanning calorimetry , 1998 .

[78]  C. Lacabanne,et al.  Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. , 2004, Journal of pharmaceutical sciences.

[79]  P. Mallon Application to Polymers , 2003 .

[80]  Robert Simha,et al.  On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers , 1962 .

[81]  A. Moguš‐Milanković,et al.  The study of glass transition in epoxy resin using thermally stimulated depolarization current measurements , 1991 .

[82]  F. E. Karasz,et al.  A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures , 1978 .

[83]  O. Campanella,et al.  Squeezing Flow Viscometry for Nonelastic Semiliquid Foods — Theory and Applications , 2002, Critical reviews in food science and nutrition.

[84]  S. Franzen,et al.  Study of Polymer Glasses by Modulated Differential Scanning Calorimetry in the Undergraduate Physical Chemistry Laboratory , 2003 .

[85]  K. Menard Dynamic Mechanical Analysis: A Practical Introduction , 1997 .

[86]  H. Spiess,et al.  Two‐dimensional exchange nuclear magnetic resonance of powder samples. III. Transition to motional averaging and application to the glass transition , 1990 .

[87]  Robert A. Stratton,et al.  The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure, and tensile strain , 1960 .

[88]  A. S. Glass,et al.  Inverse gas chromatography of glassy polymer surfaces , 1993 .

[89]  Bruno C. Hancock,et al.  The Relationship Between the Glass Transition Temperature and the Water Content of Amorphous Pharmaceutical Solids , 1994, Pharmaceutical Research.

[90]  Bruno C. Hancock,et al.  Molecular Mobility of Amorphous Pharmaceutical Solids Below Their Glass Transition Temperatures , 1995, Pharmaceutical Research.

[91]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[92]  T. G. Fox,et al.  Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers , 1955 .

[93]  N. Genin,et al.  Analyse du rôle de la transition vitreuse dans les procédés de conservation agro-alimentaires , 1995 .

[94]  R. Seyler Assignment of the glass transition , 1994 .

[95]  C. Ma,et al.  Thermal analysis of foods , 1990 .

[96]  E. D. Marzio,et al.  The glass temperature of polymer blends , 1990 .

[97]  M. Goldstein Glass temperature mixing relations and thermodynamics , 1985 .

[98]  Thermal transitions of polymers measured by atomic force microscopy , 2002 .

[99]  U. Bianchi Pressure Effects on Glass Transition in Polymers , 1965 .

[100]  S. Duddu,et al.  Effect of Glass Transition Temperature on the Stability of Lyophilized Formulations Containing a Chimeric Therapeutic Monoclonal Antibody , 1997, Pharmaceutical Research.

[101]  J. M. O'Reilly,et al.  The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate , 1962 .

[102]  Kuzmany,et al.  Glass transition in single-crystal C60 studied by high-resolution dilatometry. , 1992, Physical review letters.

[103]  Y. Roos Characterization of food polymers using state diagrams , 1995 .

[104]  H. Fujita,et al.  Diffusion-controlled stress-relaxation in polymers, I , 1957 .

[105]  P. Lillford,et al.  Food materials science : principles and practice , 2008 .

[106]  H. A. Schneider,et al.  Glass transition behaviour of compatible polymer blends , 1989 .

[107]  Butt,et al.  Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. , 1992, Physical review. B, Condensed matter.

[108]  R. J. Speedy,et al.  On the reproducibility of glasses , 1994 .

[109]  D. Dingwell,et al.  Determination of silicate liquid thermal expansivity using dilatometry and calorimetry , 1992 .

[110]  M. Reading,et al.  Modulated differential scanning calorimetry , 1994 .

[111]  Modulated differential scanning calorimetry in the glass transition region , 1995 .

[112]  Physical aging of starch, maltodextrin, and maltose. , 2005, Journal of agricultural and food chemistry.

[113]  A. P. Duffy,et al.  Dielectric relaxation spectroscopy and some applications in the pharmaceutical sciences. , 1995, Journal of pharmaceutical sciences.

[114]  H. Schreiber,et al.  Inverse gas chromatography for polymer surface characterization above and below Tg , 1993 .

[115]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[116]  W. Mattice,et al.  Atomistic models of amorphous polybutadienes. 3. Static free volume , 1993 .

[117]  A. Onjia,et al.  Determination of glass temperature of polymers by inverse gas chromatography. , 2008, Journal of chromatography. A.

[118]  P. Lillford,et al.  The glassy state in foods , 1993 .

[119]  G. A. D. Briggs,et al.  Surface Glass Transition Temperature of Amorphous Polymers. A New Insight with SFM , 2002 .

[120]  Greg Haugstad,et al.  Probing Polymer Viscoelastic Relaxations with Temperature-Controlled Friction Force Microscopy , 1998 .

[121]  J. Hutchinson,et al.  Physical aging of polymers , 1995 .

[122]  H. Pollock,et al.  Micro-thermal analysis: techniques and applications , 2001 .

[123]  C. Beatty,et al.  Different approach for the correlation of the Tg of mixed amorphous systems , 1979 .

[124]  C. Angell Why C1 = 16-17 in the WLF equation is physical - And the fragility of polymers , 1997 .

[125]  James S. Taylor,et al.  Ideal copolymers and the second‐order transitions of synthetic rubbers. i. non‐crystalline copolymers , 2007 .

[126]  G. V. D. Plaats A theoretical evaluation of a heat-flow differential scanning calorimeter , 1984 .

[127]  J. H. Gibbs,et al.  Glass temperature of copolymers , 1959 .

[128]  A. Volkov,et al.  Broadband Dielectric Spectroscopy of Solids , 2003 .

[129]  P. S. Wilson,et al.  Thermal Expansion of Amorphous Polymers at Atmospheric Pressure. II. Theoretical Considerations , 1973 .

[130]  J. Ferry Viscoelastic properties of polymers , 1961 .

[131]  C. R. Hyman,et al.  Moisture migration and control in multi-domain foods , 1998 .

[132]  W. Kegel Crystallization in Glassy Suspensions of Colloidal Hard Spheres , 2000 .

[133]  Andrei A. Gusev,et al.  On the glassy state of multiphase and pure polymer materials , 2006 .

[134]  A. Al-Muhtaseb,et al.  Moisture sorption isotherm characteristics of food products: A review , 2002 .

[135]  George Zografi,et al.  The Molecular Mobility of Supercooled Amorphous Indomethacin as a Function of Temperature and Relative Humidity , 1998, Pharmaceutical Research.

[136]  Walter J. Murphy,et al.  ADVANCES IN CHEMISTRY SERIES: Numbers 15 and 17 Demonstrate Rapidly Crowing Interest in Documentation; International Conference To Be Held in 1958 , 1956 .

[137]  D. Dingwell,et al.  Determination of silicate liquid thermal expansivity using dilatometry and calorimetry;Determination of silicate liquid thermal expansivity using dilatometry and calorimetry , 1992 .

[138]  P. Royall,et al.  Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. , 1999, International journal of pharmaceutics.

[139]  D. Turnbull,et al.  Free‐Volume Model of the Amorphous Phase: Glass Transition , 1961 .

[140]  R. Parker,et al.  Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. , 1990, Carbohydrate research.

[141]  S. Flach,et al.  TheA4 glass transition singularity , 1987 .

[142]  J. Dodds,et al.  Surface properties of low specific surface powders using inverse gas chromatography , 2005 .

[143]  P. Meares The second-order transition of polyvinyl acetate , 1957 .

[144]  Raymond F. Boyer,et al.  Thermal Expansion and Second‐Order Transition Effects in High Polymers: PART II. Theory , 1945 .

[145]  P. S. Wilson,et al.  Thermal Expansion of Amorphous Polymers at Atmospheric Pressure. I. Experimental , 1973 .

[146]  S. Torquato Glass transition: Hard knock for thermodynamics , 2000, Nature.

[147]  R. Parker,et al.  THE VISCOSITY OF SUPERCOOLED FRUCTOSE AND ITS GLASS TRANSITION TEMPERATURE , 1990 .

[148]  Y. Roos Melting and glass transitions of low molecular weight carbohydrates , 1993 .

[149]  G. Christie,et al.  Measurement of starch thermal transitions using differential scanning calorimetry , 2001 .

[150]  J. Hutchinson,et al.  The application of modulated differential scanning calorimetry to the glass transition of polymers. I. A single-parameter theoretical model and its predictions , 1996 .

[151]  F. Maurer,et al.  Free Volume and Tacticity in Polystyrenes , 1999 .

[152]  G. Tarjus An overview of the theories of the glass transition , 2010, 1010.2938.

[153]  J. Heng,et al.  Inverse gas chromatographic method for measuring the dispersive surface energy distribution for particulates. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[154]  S. Khalloufi,et al.  Mathematical Model for Prediction of Glass Transition Temperature of Fruit Powders , 2000 .

[155]  K. Backfolk,et al.  Thermal analysis and topographical characterization of latex films by scanning probe microscopy , 2007 .

[156]  J. Donnet,et al.  Energy site distribution of carbon black surfaces by inverse gas chromatography at finite concentration conditions , 2002 .

[157]  H. A. Schneider,et al.  The glass temperature of polymer blends: comparison of both the free volume and the entropy predictions with data , 1992 .

[158]  R. J. Speedy Kauzmann's paradox and the glass transition. , 2003, Biophysical chemistry.

[159]  J. Langer The mysterious glass transition , 2007 .

[160]  L. Slade,et al.  A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs) , 1986 .

[161]  E. Grulke,et al.  Glass Transition Temperatures of Polymers , 1999 .

[162]  M. T. Kalichevsky,et al.  A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA , 1992 .

[163]  Paul Chen,et al.  Pulse NMR study of glass transition in maltodextrin , 1999 .

[164]  M. Goldstein,et al.  PVT Relationships for Liquid and Glassy Poly(vinyl acetate). , 1974, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[165]  A. Tobolsky,et al.  Glass Transition Temperature of Polymers: Effect of Plasticizer, Chain Ends, and Comonomer , 1965 .

[166]  R. Fieschi,et al.  Ionic Thermocurrents in Dielectrics , 1966 .

[167]  S. Loshaek Crosslinked polymers. II. Glass temperatures of copolymers of methyl methacrylate and glycol dimethacrylates , 1955 .

[168]  H. Pollock,et al.  Dynamic mechanical analysis at the submicron scale , 2000 .

[169]  T. Howes,et al.  Instrumentation and testing of a thermal mechanical compression test for glass-rubber transition analysis of food powders , 2007 .

[170]  S. L. Malhotra,et al.  Effect of Molecular Weight on Glass Transition by Differential Scanning Calorimetry , 1974 .

[171]  Frank H. Stillinger,et al.  Supercooled liquids, glass transitions, and the Kauzmann paradox , 1988 .

[172]  C. Angell,et al.  Glass transition temperatures for simple molecular liquids and their binary solutions , 1978 .

[173]  W. Paul Molecular dynamics simulations of the glass transition in polymer melts , 2004 .

[174]  Y. Kobayashi Quenching of positronium atoms by nitrobenzene in various solutions , 1991 .

[175]  R. Cameron,et al.  A study of the molecular relaxations in solid starch using dielectric spectroscopy , 2000 .

[176]  P G Wolynes,et al.  Fragilities of liquids predicted from the random first order transition theory of glasses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[177]  J. Rieger,et al.  The glass transition temperature of random copolymers: 1. Experimental data and the Gordon-Taylor equation , 1997 .

[178]  R. H. Boyd,et al.  Dielectric relaxation in poly(ethylene terephthalate) , 1986 .

[179]  H. Diogo,et al.  Slow molecular mobility in the crystalline and amorphous solid states of glucose as studied by Thermally Stimulated Depolarization Currents (TSDC). , 2008, Carbohydrate research.

[180]  Y. Roos WATER ACTIVITY and PHYSICAL STATE EFFECTS ON AMORPHOUS FOOD STABILITY , 1993 .

[181]  Sokolov,et al.  Shear modulation force microscopy study of near surface glass transition temperatures , 2000, Physical review letters.

[182]  Glenn H. Fredrickson,et al.  Kinetic Ising model of the glass transition , 1984 .

[183]  J. Karkalas,et al.  Starch-composition, fine structure and architecture , 2004 .

[184]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[185]  J. Fornazero,et al.  Dynamics of sorbitol and maltitol over a wide time-temperature range , 1999 .

[186]  W. Kauzmann,et al.  The Viscous Flow of Large Molecules , 1940 .

[187]  R. Simha,et al.  Molecular weight-dependence of free volume in polystyrene studied by positron annihilation measurements , 1994 .

[188]  D. T. Turner,et al.  Glass transition elevation of polystyrene by crosslinks , 1981 .

[189]  Petri Ihalainen,et al.  Determination of the glass transition temperature of latex films: Comparison of various methods , 2007 .

[190]  Y. Jean,et al.  Free-volume distributions of polystyrene probed by positron annihilation : comparison with free-volume theories , 1993 .

[191]  S. Lim,et al.  Physical Aging of Amorphous Starches (A Review) , 2006 .

[192]  W. Gotze,et al.  Dynamics of supercooled liquids and the glass transition , 1984 .

[193]  M. T. Kalichevsky,et al.  A study of the glass transition of amylopectin—sugar mixtures , 1993 .

[194]  H. Pollock,et al.  Modulated differential scanning calorimetry: 1. A study of the glass transition behaviour of blends of poly(methyl methacrylate) and poly(styrene-co-acrylonitrile) , 1995 .

[195]  Y. Roos The Glassy State , 2008 .

[196]  R. Fieschi,et al.  Ionic Thermoconductivity. Method for the Investigation of Polarization in Insulators , 1964 .

[197]  H. Fujita,et al.  Diffusion‐controlled stress relaxation in polymers. III. Stress relaxation in a swelling polymer , 1958 .

[198]  M. Peleg Mathematical Characterization and Graphical Presentation of the Stiffhess‐Temperature‐Moisture Relationship of Gliadin , 1994 .

[199]  Louise Slade,et al.  Water and the glass transition — Dependence of the glass transition on composition and chemical structure: Special implications for flour functionality in cookie baking , 1994 .

[200]  Rodolfo Pinal,et al.  Entropy of Mixing and the Glass Transition of Amorphous Mixtures , 2008, Entropy.

[201]  T. Rieckmann,et al.  Dielectric Relaxation Spectroscopy of Reactively Blended Amorphous Poly(ethylene terephthalate)-poly(ethylene naphthalate) Films , 2001 .

[202]  R. H. Boyd Relaxation processes in crystalline polymers: experimental behaviour — a review , 1985 .

[203]  Ludger Santen,et al.  Absence of thermodynamic phase transition in a model glass former , 2000, Nature.

[204]  J. Rieger,et al.  The glass transition temperature of random copolymers: 2. Extension of the Gordon-Taylor equation for asymmetric Tg vs composition curves , 1997 .

[205]  M. Peleg On the use of the WLF model in polymers and foods. , 1992, Critical reviews in food science and nutrition.

[206]  R. Simha,et al.  Low‐temperature thermal expansivities of polyethylene, polypropylene, mixtures of polyethylene and polypropylene, and polystyrene , 1966 .

[207]  Joaquim J. Moura Ramos,et al.  Molecular Mobility and Fragility in Indomethacin: A Thermally Stimulated Depolarization Current Study , 2001, Pharmaceutical Research.