Notes on the K3 Surface and the Mathieu Group M 24
暂无分享,去创建一个
[1] Miranda C. N. Cheng. K3 Surfaces, N=4 Dyons, and the Mathieu Group M24 , 2010, 1005.5415.
[2] S. Mukai. Finite groups of automorphisms of K3 surfaces and the Mathieur group , 1988 .
[3] E. Witten. Elliptic genera and quantum field theory , 1987 .
[4] T. Eguchi,et al. Character formulas for the N = 4 superconformal algebra , 1988 .
[5] S. Hohenegger,et al. Mathieu twining characters for K3 , 2010, 1006.0221.
[6] Edward Witten,et al. Three-Dimensional Gravity Revisited , 2007, 0706.3359.
[7] J. G. Thompson,et al. Some Numerology between the Fischer-Griess Monster and the Elliptic Modular Function , 1979 .
[8] V. Kac. Vertex algebras for beginners , 1997 .
[9] Monstrous Moonshine: The First Twenty‐Five Years , 2004, math/0402345.
[10] K. Ono. THE f(q) MOCK THETA FUNCTION CONJECTURE AND PARTITION RANKS , 2005 .
[11] C. Dong,et al. An orbifold theory of genus zero associated to the sporadic groupM24 , 1994 .
[12] T. Eguchi,et al. Unitary representations of the N=4 superconformal algebra , 1987 .
[13] Ozlem Umdu,et al. Monstrous moonshine , 2019, 100 Years of Math Milestones.
[14] J. Lepowsky,et al. Vertex Operator Algebras and the Monster , 2011 .
[15] S. Kondō. Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of $K3$ surfaces , 1998 .
[16] D. Zagier. Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann) , 2009 .
[17] S. Zwegers,et al. Mock Theta Functions , 2008 .
[18] Superconformal algebras and mock theta functions 2: Rademacher expansion for K3 surface , 2009, 0904.0911.
[19] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[20] H. Ooguri,et al. Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy , 1989 .
[21] T. Eguchi,et al. $ \mathcal{N} = 4 $ superconformal algebra and the entropy of hyperKähler manifolds , 2009, 0909.0410.
[22] J. Conway,et al. Atlas of finite groups : maximal subgroups and ordinary characters for simple groups , 1987 .