Development of a Geometric Descriptor for the Strategic Synthesis of Remeika Phases

[1]  R. Baumbach,et al.  Electronic landscape of the f-electron intermetallics with the ThCr2Si2 structure , 2022, Science advances.

[2]  Yang Zhao,et al.  Antiperovskite Electrolytes for Solid-State Batteries. , 2022, Chemical reviews.

[3]  Yiying Wu,et al.  Antiperovskite Superionic Conductors: A Critical Review , 2021, ACS materials Au.

[4]  K. Kovnir Predictive Synthesis , 2021, Chemistry of Materials.

[5]  J. Miao,et al.  Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors , 2021, Advanced science.

[6]  Wencong Lu,et al.  Machine learning for perovskite materials design and discovery , 2021, npj Computational Materials.

[7]  M. Saidaminov,et al.  Chiral-perovskite optoelectronics , 2020, Nature Reviews Materials.

[8]  Z. Song,et al.  Tolerance Factor and Phase Stability of the Normal Spinel Structure , 2020 .

[9]  M. Marques,et al.  Recent advances and applications of machine learning in solid-state materials science , 2019, npj Computational Materials.

[10]  P. Canfield New materials physics , 2019, Reports on progress in physics. Physical Society.

[11]  Harold Y. Hwang,et al.  Superconductivity in an infinite-layer nickelate , 2019, Nature.

[12]  J. Neilson,et al.  Tolerance Factor and Cooperative Tilting Effects in Vacancy-Ordered Double Perovskite Halides , 2018 .

[13]  S. Steinberg,et al.  Revealing Tendencies in the Electronic Structures of Polar Intermetallic Compounds , 2018 .

[14]  G. Miller,et al.  Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization. , 2018, Accounts of chemical research.

[15]  T. Kitamura,et al.  Ferroelectricity in Ruddlesden-Popper Chalcogenide Perovskites for Photovoltaic Application: The Role of Tolerance Factor. , 2017, The journal of physical chemistry letters.

[16]  Weiwei Xie,et al.  111-Type Semiconductor ReGaSi Follows 14e- Rules. , 2017, Inorganic chemistry.

[17]  Nan Wang,et al.  Optical spectroscopy study of charge density wave order in Sr3Rh4Sn13 and (Sr0.5Ca0.5)3Rh4Sn13 , 2016, 1609.04206.

[18]  Wen Zhang,et al.  Predicting and Screening Dielectric Transitions in a Series of Hybrid Organic-Inorganic Double Perovskites via an Extended Tolerance Factor Approach. , 2016, Angewandte Chemie.

[19]  M. Brando,et al.  Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2 , 2016, Science.

[20]  D. Fredrickson,et al.  Generality of the 18-n Rule: Intermetallic Structural Chemistry Explained through Isolobal Analogies to Transition Metal Complexes. , 2015, Inorganic chemistry.

[21]  P. Canfield,et al.  Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples , 2015, 1509.08131.

[22]  J. Akimitsu,et al.  Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation , 2015, Scientific Reports.

[23]  M. Karppinen,et al.  A2B′B″O6 perovskites: A review , 2015 .

[24]  J. Chan,et al.  Superconductivity in Single Crystals of Lu3T4Ge13–x (T = Co, Rh, Os) and Y3T4Ge13–x (T = Ir, Rh, Os) , 2015 .

[25]  C. Felser,et al.  A large family of filled skutterudites stabilized by electron count , 2015, Nature Communications.

[26]  J. Corbett,et al.  Ordered BaAl4-type variants in the BaAu(x)Sn(4-x) system: a unified view on their phase stabilities versus valence electron counts. , 2014, Inorganic chemistry.

[27]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[28]  Lu Cai,et al.  The tolerance factors of the pyrochlore crystal structure , 2011 .

[29]  M. Kanatzidis,et al.  Synthesis, magnetism and electronic structure of YbNi2−xFexAl8 (x=0.91) isolated from Al flux , 2008 .

[30]  Z. Fisk,et al.  Superconductivity and quantum criticality in the heavy-fermion system |[beta]|-YbAlB4 , 2008 .

[31]  Z. Fisk,et al.  Crystal growth, transport, and magnetic properties of Ln3Co4Sn13 (Ln=La, Ce) with a perovskite-like structure , 2006 .

[32]  H. Sugawara,et al.  Anomalous phase transitions in the heavy fermion compound Ce3Ir4Sn13 , 2005 .

[33]  G. Miller,et al.  The s-p bonded representatives of the prominent BaAl4 structure type: a case study on structural stability of polar intermetallic network structures. , 2002, Journal of the American Chemical Society.

[34]  P. Bordet,et al.  Competition between Magnetism and Superconductivity in Erbium Rhodium Stannide , 1999 .

[35]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[36]  Zachary Fisk,et al.  Growth of single crystals from metallic fluxes , 1992 .

[37]  D. Michael P. Mingos,et al.  Polyhedral skeletal electron pair approach. A generalised principle for condensed polyhedra , 1983 .

[38]  J. P. Remeika,et al.  The crystal structure of SnYb3Rh4Sn12, a new ternary superconducting stannide , 1980 .

[39]  J. P. Remeika,et al.  Crystal chemistry, growth and reentrant behavior of additional superconducting/magnetic stannides , 1980 .

[40]  G. P. Espinosa Crystal growth and crystal-chemical investigation of systems containing new superconducting and/or magnetic ternary stannides , 1980 .

[41]  J. Vandenberg The crystallography of new ternary compounds in the system rare-earth-rhodium-tin , 1980 .

[42]  J. P. Remeika,et al.  A new family of ternary intermetallic superconducting/magnetic stannides , 1980 .

[43]  W. Klemm,et al.  Volumeninkremente und Radien einiger einfach negativ gelandener Ionen , 1963 .

[44]  Robert K. Fitzgerel The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1941, Nature.

[45]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .