Inverse linear programming with interval coefficients

The paper deals with the inverse linear programming problem over intervals. More precisely, given interval domains for the objective function coefficients and constraint coefficients of a linear program, we ask for which scenario a prescribed optimal value is attained. Using continuity of the optimal value function (under some assumptions), we propose a method based on parametric linear programming techniques. We study special cases when the interval coefficients are situated in the objective function and/or on the right-hand sides of the constraints as well as the generic case when possibly all coefficients are intervals. We also compare our method with the straightforward binary search technique. Finally, we illustrate the theory by an accompanying numerical study, called "Matrix Casino", showing some approaches to designing a matrix game with a prescribed game value.

[1]  C. Jansson,et al.  Rigorous solution of linear programming problems with uncertain data , 1991, ZOR Methods Model. Oper. Res..

[2]  Mehdi Allahdadi,et al.  The optimal solution set of the interval linear programming problems , 2012, Optimization Letters.

[3]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[4]  Andrew J. Schaefer,et al.  Inverse integer programming , 2009, Optim. Lett..

[5]  Ralph E. Steuer Algorithms for Linear Programming Problems with Interval Objective Function Coefficients , 1981, Math. Oper. Res..

[6]  Alireza Ghaffari Hadigheh,et al.  Sensitivity analysis in linear optimization: Invariant support set intervals , 2006, Eur. J. Oper. Res..

[7]  Christian Jansson,et al.  A self-validating method for solving linear programming problems with interval input data , 1988 .

[8]  J. G. Evans,et al.  Postoptimal Analyses, Parametric Programming, and Related Topics , 1979 .

[9]  L. Collatz,et al.  F. Nožiêka/J. Guddat/H. Hollatz/B. Bank, Theorie der linearen parametrischen Optimierung. 312 S., Berlin 1974. Akademie‐Verlag. Preis 52,‐ M , 2007 .

[10]  Milan Hladík,et al.  How to determine basis stability in interval linear programming , 2012, Optimization Letters.

[11]  Jianzhon Zhang,et al.  Calculating some inverse linear programming problems , 1996 .

[12]  T. Terlaky,et al.  Active Constraint Set Invariancy Sensitivity Analysis in Linear Optimization , 2007 .

[13]  Yongpei Guan,et al.  The inverse optimal value problem , 2005, Math. Program..

[14]  Carlos Henggeler Antunes,et al.  An enumerative algorithm for computing all possibly optimal solutions to an interval LP , 2014 .

[15]  Roger J.-B. Wets,et al.  On the continuity of the value of a linear program and of related polyhedral-valued multifunctions , 1982 .

[16]  Rudolf Krawczyk Fehlerabschätzung bei linearer Optimierung , 1975, Interval Mathematics.

[17]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[18]  J. Rohn,et al.  Interval linear programming , 2006 .

[19]  F. Nožička Theorie der linearen parametrischen Optimierung , 1974 .

[20]  Dengfeng Li Linear programming approach to solve interval-valued matrix games , 2011 .

[21]  Milan Hladík Solution Set Characterization of Linear Interval Systems with a Specific Dependence Structure , 2007, Reliab. Comput..

[22]  Frantisek Mráz Calculating the exact bounds of optimal valuesin LP with interval coefficients , 1998, Ann. Oper. Res..

[23]  Milan Hladı´k Weak and strong solvability of interval linear systems of equations and inequalities , 2013 .

[24]  Alireza Ghaffari Hadigheh,et al.  Generalized support set invariancy sensitivity analysis in linear optimization , 2006 .

[25]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[26]  Ravindra K. Ahuja,et al.  Inverse Optimization , 2001, Oper. Res..

[27]  Yong Jiang,et al.  A perturbation approach for a type of inverse linear programming problems , 2011, Int. J. Comput. Math..

[28]  Milan Hladík,et al.  Multiparametric linear programming: Support set and optimal partition invariancy , 2010, Eur. J. Oper. Res..

[29]  Lizhi Wang,et al.  Heuristic algorithms for the inverse mixed integer linear programming problem , 2011, J. Glob. Optim..

[30]  C. Jansson Calculation of exact bounds for the solution set of linear interval systems , 1997 .

[31]  M. Zeleny,et al.  Linear Multiparametric Programming by Multicriteria Simplex Method , 1976 .

[32]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[33]  Jianzhon Zhang,et al.  A further study on inverse linear programming problems , 1999 .

[34]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .