Computer-based estimation and compensation of diametral errors in CNC turning of cantilever bars

This paper aims to introduce a computer-based estimation and compensation method for diametral errors in cantilever bar turning without additional hardware requirements. In the error estimation method, the error characteristics of workpieces are determined experimentally depending on cutting speed, depth of cut, feed rate, workpiece diameter, length from the chuck and the geometric error sum of CNC lathe. An Artificial Neural Network (ANN) model is trained using these experimental error characteristics for estimation of the error. The ANN model estimated the workpiece dimensional errors with a good accuracy. Error correction is realised via turning of workpieces with a CNC part program which modified based on the estimated error profile. The dimensional errors are reduced approximately by 90% with the proposed method.

[1]  Ben Wang,et al.  Radial Error Feedback Control for Bar Turning in CNC Turning Centers , 2003 .

[2]  Steven Y. Liang,et al.  Evolutionary Optimization of Machining Processes , 2006, J. Intell. Manuf..

[3]  George-Christopher Vosniakos,et al.  Prediction of workpiece elastic deflections under cutting forces in turning , 2006 .

[4]  Xiaoli Li,et al.  Predicting Machining Errors in Turning Using Hybrid Learning , 2001 .

[5]  Michel Guillot,et al.  Accuracy enhancement of multi-axis CNC machines through on-line neurocompensation , 2000, J. Intell. Manuf..

[6]  George Chryssolouris,et al.  A Comparison of Statistical and AI Approaches to the Selection of Process Parameters in Intelligent Machining , 1990 .

[7]  Yoram Koren,et al.  Improving machining accuracy in precision line boring , 2002, J. Intell. Manuf..

[8]  John C. Ziegert,et al.  Error compensation in machine tools: a neural network approach , 1994, J. Intell. Manuf..

[9]  S. S. Pande,et al.  Intelligent tool path correction for improving profile accuracy in CNC turning , 2000 .

[10]  Maki K. Rashid,et al.  Simulation study on the improvements of machining accuracy by using smart materials , 2005 .

[11]  M. Guillot,et al.  On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion , 1997 .

[12]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[13]  K. Kato,et al.  Development of an Intelligent Machining Center Incorporating Active Compensation for Thermal Distortion , 1993 .

[14]  Jun Ni,et al.  Real-time cutting force induced error compensation on a turning center , 1999 .

[15]  Maki K. Rashid,et al.  Fuzzy algorithm and structural stiffness in error attenuation of intelligent toolpost , 2005, J. Intell. Manuf..

[16]  Can Cogun,et al.  A cutting force induced error elimination method for turning operations , 2005 .

[17]  S. Kung,et al.  VLSI Array processors , 1985, IEEE ASSP Magazine.

[18]  A.-V. Phan,et al.  Finite element and experimental studies of diametral errors in cantilever bar turning , 2003 .

[19]  Ben Wang,et al.  Radial Error Feedback Geometric Adaptive Control for Bar Turning in CNC Turning Centers , 2003 .

[20]  Sri Hinduja,et al.  Assessment of Force-Induced Errors in CNC Turning , 2003 .

[21]  Erkan Ülker,et al.  An artificial immune system approach to CNC tool path generation , 2009, J. Intell. Manuf..