Thermal annealing induced enhancement of room temperature magnetic memory effect in Fe-doped NiO nanoparticles

We report room temperature (RT) ferromagnetism and magnetic memory effect in Ni0.95Fe0.05O nanoparticles (NPs) synthesize by hydrothermal method followed by post-annealing in an ambient atmosphere. The temperature and time-dependent magnetization measurements show that the effect of post-annealing at higher temperatures leads to enhancement in the intraparticle interactions. The enhanced intraparticle interaction has provided additional magnetic anisotropy energy resulting in RT ferromagnetic (FM) properties and enhanced magnetic memory effect. The findings from this study will be useful for the development and understanding of RT FM materials to facilitate the integration of spintronic devices.

[1]  Y. Liu,et al.  Field pulse induced magnetic memory effect at room temperature in exchange coupled NiFe2O4/NiO nanocomposites , 2019, Journal of Magnetism and Magnetic Materials.

[2]  Y. Hayakawa,et al.  Understanding the Magnetic Memory Effect in Fe-Doped NiO Nanoparticles for the Development of Spintronic Devices , 2018, ACS Applied Nano Materials.

[3]  R. Schäublin,et al.  Operando X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni1−xFexOy nanoparticles , 2018 .

[4]  S. Yuan,et al.  Magnetic memory effect at room temperature in exchange coupled NiFe2O4-NiO nanogranular system , 2017 .

[5]  L. Karmakar,et al.  Magnetic anomalies in Fe-doped NiO nanoparticle , 2017 .

[6]  T. Chan,et al.  Erratum to: Strong Pinned-Spin-Mediated Memory Effect in NiO Nanoparticles , 2017, Nanoscale Research Letters.

[7]  Y. Zabila,et al.  Influence of Superparamagnetism on Exchange Anisotropy at CoO/[Co/Pd] Interfaces. , 2016, ACS applied materials & interfaces.

[8]  Yu-Ming Chang,et al.  Size confined magnetic phase in NiO nanoparticles , 2016 .

[9]  B. Bandyopadhyay,et al.  Strong memory effect at room temperature in nanostructured granular alloy Co0.3Cu0.7 , 2015 .

[10]  P. Mandal,et al.  Memory effects and magnetic relaxation in single-crystalline La 0.9 Sr 0.1 CoO 3 , 2014, 1404.1195.

[11]  Yuan-Ron Ma,et al.  Short-Range Magnon Excitation in NiO Nanoparticles , 2013 .

[12]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[13]  Yuan-Ron Ma,et al.  Growth mechanism and magnon excitation in NiO nanowalls , 2011, Nanoscale research letters.

[14]  P. Mallick,et al.  Structural and magnetic properties of Fe doped NiO , 2009 .

[15]  J. He,et al.  Exchange bias and the origin of room-temperature ferromagnetism in Fe-doped NiO bulk samples , 2008 .

[16]  Sanjay Kumar,et al.  Magnetic coding in systems of nanomagnetic particles , 2006 .

[17]  S. Cardoso,et al.  Superparamagnetism versus superspin glass behavior in dilute magnetic nanoparticle systems , 2005 .

[18]  G. Tsoi,et al.  Memory effects and magnetic interactions in a γ‐Fe2O3 nanoparticle system , 2005 .

[19]  H. Takayama,et al.  Aging and memory effects in superparamagnets and superspin glasses , 2004, cond-mat/0406546.

[20]  M. Salamon,et al.  Memory effects in an interacting magnetic nanoparticle system. , 2003, Physical review letters.

[21]  A. Bunde,et al.  Slow relaxation in ferromagnetic nanoparticles: Indication of spin-glass behavior , 2003 .

[22]  R. Kodama,et al.  Finite Size Effects in Antiferromagnetic NiO Nanoparticles , 1997 .

[23]  A. Heuer,et al.  Interaction of dopant cations with 4: 1 defect clusters in non-stoichiometric 3d transition metal monoxides: A theoretical study , 1987 .

[24]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .