Liquid–liquid centrifugal separation — New equipment for optical (photographic) evaluation at laboratory scale

Abstract Since liquid–liquid separation techniques are applied in chemical process industry, research and development received a strong level of attention. Thus, liquid–liquid separation behavior in gravity equipment – e.g., in settling tanks – especially sedimentation and coalescence are investigated in detail. However, for liquid–liquid separation in centrifugal equipment – e.g., tube centrifuges – only superficial knowledge and less detailed investigations are given in open literature. This work focuses on the development of a new laboratory equipment for optical (photographic) evaluation of the centrifugal liquid–liquid separation processes. A new stirred centrifugal batch settling cell (SCBSC) utilizing a rotor–rotor/stator concept, experimental setup and method as well as analytical procedures are presented and discussed. Furthermore, results of mixing and separation process within the SCBSC are shown. The centrifugal force field thereby affects the required differential rotation speed for the dispersion process. The evaluation of the separation process is presented and discussed considering sedimentation and coalescence curves exemplary for two liquid–liquid systems. In the course of this, a comparison between gravitational and centrifugal separation was successful. Finally, the separation behavior is described by a dimensionless dispersion number.

[1]  J. M. Benito,et al.  Centrifugal separation efficiency in the treatment of waste emulsified oils , 2006 .

[2]  R. M. Boom,et al.  Separation kinetics of an oil-in-water emulsion under enhanced gravity , 2012 .

[3]  Qisu Zou,et al.  Centrifugal Contactors: Separation of an Aqueous and an Organic Stream in the Rotor Zone (LA‐UR‐05‐7800) , 2006 .

[4]  Hassan A. Arafat,et al.  Characterization and recovery of solvent entrained during the use of centrifugal contactors. , 2002 .

[5]  Jiazhen Zhou,et al.  Development of a ϕ20 mm annular centrifugal contactor for the hot test of the total TRPO process , 2009 .

[6]  W. Duan,et al.  Determination of the Liquid Hold-up Volume and the Interface Radius of an Annular Centrifugal Contactor using the Liquid-Fast-Separation Method , 2016 .

[7]  Ralph A. Leonard,et al.  Improved annular centrifugal contactor for solvent extraction reprocessing of nuclear reactor fuel , 1978 .

[8]  Shuo Cao,et al.  Effects of Structure Parameters on the Hydraulic Performance of the ϕ20 Annular Centrifugal Contactor , 2013 .

[9]  David H. Meikrantz,et al.  Design Attributes and Scale Up Testing of Annular Centrifugal Contactors , 2005 .

[10]  Ralph A. Leonard,et al.  Solvent characterization using the dispersion number , 1995 .

[11]  D. Lerche,et al.  Centrifugal separation in tube and disc geometries: experiments and theoretical models , 2008 .

[12]  Ralph A. Leonard,et al.  Liquid‐Liquid dispersion in turbulent couette flow , 1981 .

[13]  U. K. Mudali,et al.  Hydrodynamic and mass transfer studies of 125 mm centrifugal extractor with 30% TBP/nitric acid system , 2015 .

[14]  Ralph A. Leonard,et al.  Annular Centrifugal Contactors for Solvent Extraction , 1980 .

[15]  Ralph A. Leonard,et al.  Recent Advances in Centrifugal Contactor Design , 1988 .

[16]  R. Natarajan,et al.  HYDRODYNAMIC STUDY OF FLOW IN THE ROTOR REGION OF ANNULAR CENTRIFUGAL CONTACTORS USING CFD SIMULATION , 2013 .

[17]  Ladislav Steiner,et al.  Zentrifugalextraktion – Eine Literaturübersicht , 1982 .

[18]  Eberhard Simon Die diskontinuierliche Zentrifuge als Betriebssystem in der Chemischen Industrie , 1982 .

[19]  Centrifugal Separation with Emphasis on the Rotational Particle Separator , 2014 .

[20]  Wuhua Duan,et al.  Development and Performance of a New Annular Centrifugal Contactor for Semi‐Industrial Scale , 2005 .

[21]  R. L. Cummins,et al.  Modification of a Centrifugal Separator for In-Well Oil-Water Separation , 2005 .

[22]  Jyeshtharaj B. Joshi,et al.  Dispersed phase hold-up, effective interfacial area and Sauter mean drop diameter in annular centrifugal extractors , 2009 .

[23]  L. L. Macaluso,et al.  A New Annular Centrifugal Contactor for Pharmaceutical Processes , 2002 .

[24]  Jyeshtharaj B. Joshi,et al.  Hydrodynamic and mass transfer characteristics of annular centrifugal extractors , 2008 .

[25]  Shaowei Li,et al.  CFD Simulation of Gas–Liquid–Liquid Three-Phase Flow in an Annular Centrifugal Contactor , 2012 .

[26]  Sheng Dai,et al.  Separation of Ionic Liquid Dispersions in Centrifugal Solvent Extraction Contactors , 2006 .

[27]  Vivek V. Ranade,et al.  CFD Simulation of Annular Centrifugal Extractors , 2012 .

[28]  Y. Jammoal,et al.  Drop velocity in a rotating liquid-liquid system , 2015 .

[29]  L. L. Macaluso,et al.  ANNULAR CENTRIFUGAL CONTACTORS FOR MULTIPLE STAGE EXTRACTION PROCESSES , 2001 .

[30]  D. B. Chamberlain,et al.  Centrifugal Contactors for Laboratory-Scale Solvent Extraction Tests , 1995 .

[31]  Ross E. Swaney,et al.  CFD Simulation of the Separation Zone of an Annular Centrifugal Contactor , 2009 .

[32]  Uwe Schaflinger,et al.  Centrifugal separation of a mixture , 1990 .

[33]  Jyeshtharaj B. Joshi,et al.  Annular Centrifugal Contactors—A Review , 2006 .