Existence of Extremals for a Fourier Restriction Inequality

The adjoint Fourier restriction inequality of Tomas and Stein states that the mapping $f\mapsto \widehat{f\sigma}$ is bounded from $\lt(S^2)$ to $L^4(\reals^3)$. We prove that there exist functions which extremize this inequality, and that any extremizing sequence of nonnegative functions has a subsequence which converges to an extremizer.

[1]  William Beckner,et al.  Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , 1993 .

[2]  Christopher D. Sogge,et al.  Fourier integrals in classical analysis: Index , 1993 .

[3]  Pascal B'egout,et al.  Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation , 2007, 1207.2028.

[4]  Shuanglin Shao,et al.  Maximizers for the Strichartz and the Sobolev-Strichartz inequalities for the Schrödinger equation , 2009 .

[5]  M. Christ On extremals for a Radon-like transform , 2011, 1106.0728.

[6]  M. Christ,et al.  Gaussians Rarely Extremize Adjoint Fourier Restriction Inequalities For Paraboloids , 2010, 1012.1346.

[7]  J. Bourgain,et al.  Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .

[8]  Claus Müller Analysis of Spherical Symmetries in Euclidean Spaces , 1997 .

[9]  E. Carneiro A Sharp Inequality for the Strichartz Norm , 2008, 0809.4054.

[10]  L. Vega,et al.  Restriction theorems and maximal operators related to oscillatory integrals in $\mathbb{R}^3$ , 1999 .

[11]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[12]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[13]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[14]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[15]  L. Fanelli,et al.  On the existence of maximizers for a family of restriction theorems , 2010, 1007.2063.

[16]  Pierre-Louis Lions,et al.  The concentration-compactness principle in the Calculus of Variations , 1985 .

[17]  Damiano Foschi Maximizers for the Strichartz Inequality , 2004 .

[18]  A. Carbery,et al.  Heat-flow monotonicity of Strichartz norms , 2008, 0809.4783.

[19]  Vadim Zharnitsky,et al.  On sharp Strichartz inequalities in low dimensions , 2006 .

[20]  Michael Christ,et al.  On the extremizers of an adjoint Fourier restriction inequality , 2010, 1006.4318.

[21]  M. Christ QUASIEXTREMALS FOR A RADON-LIKE TRANSFORM , 2011, 1106.0722.

[22]  M. Kunze On the Existence of a Maximizer for the Strichartz Inequality , 2003 .