Analysis of Some Global Optimization Algorithms for Space Trajectory Design

In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of ²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper.

[1]  Massimiliano Vasile,et al.  Design of Earth–Mars transfer trajectories using evolutionary-branching technique☆ , 2003 .

[2]  Bernardetta Addis,et al.  Local optima smoothing for global optimization , 2005, Optim. Methods Softw..

[3]  Massimiliano Vasile,et al.  Automated Multigravity Assist Trajectory Planning with a Modified Ant Colony Algorithm , 2010, J. Aerosp. Comput. Inf. Commun..

[4]  P. Cage,et al.  Interplanetary trajectory optimization using a genetic algorithm , 1994 .

[5]  David B. Spencer,et al.  Optimal Spacecraft Rendezvous Using Genetic Algorithms , 2002 .

[6]  Michael Cupples,et al.  Interplanetary Mission Design Using Differential Evolution , 2007 .

[7]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[8]  Günter Rudolph,et al.  Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[9]  Ossama Abdelkhalik,et al.  Hidden Genes Genetic Algorithm for Multi-Gravity-Assist Trajectories Optimization , 2011 .

[10]  G. Rauwolf,et al.  Near-optimal low-thrust orbit transfers generated by a genetic algorithm , 1996 .

[11]  Takeshi Yamada,et al.  Genetic Algorithms, Path Relinking, and the Flowshop Sequencing Problem , 1998, Evolutionary Computation.

[12]  M. Clerc,et al.  Particle Swarm Optimization , 2006 .

[13]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[14]  Fernando Alonso Zotes,et al.  Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn , 2012, Eng. Appl. Artif. Intell..

[15]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[16]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[17]  Bruce A. Conway,et al.  Automated Design of Multiphase Space Missions Using Hybrid Optimal Control , 2009 .

[18]  Massimiliano Vasile,et al.  An Inflationary Differential Evolution Algorithm for Space Trajectory Optimization , 2011, IEEE Transactions on Evolutionary Computation.

[19]  C. Adcock Sample size determination : a review , 1997 .

[20]  Massimiliano Vasile,et al.  On the Preliminary Design of Multiple Gravity-Assist Trajectories , 2011, ArXiv.

[21]  Qibo Peng,et al.  Low-thrust trajectory optimization for multiple target bodies tour mission , 2011 .

[22]  Marco Locatelli,et al.  On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..

[23]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[24]  D. Mortari,et al.  On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .

[25]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Oded Galor,et al.  Introduction to Stability Analysis of Discrete Dynamical Systems , 2004 .

[27]  G. Radice,et al.  Advanced Global Optimisation Tools for Mission Analysis and Design , 2004 .

[28]  J´nos Pintér,et al.  Convergence properties of stochastic optimization procedures , 1984 .