Analysis of Some Global Optimization Algorithms for Space Trajectory Design
暂无分享,去创建一个
[1] Massimiliano Vasile,et al. Design of Earth–Mars transfer trajectories using evolutionary-branching technique☆ , 2003 .
[2] Bernardetta Addis,et al. Local optima smoothing for global optimization , 2005, Optim. Methods Softw..
[3] Massimiliano Vasile,et al. Automated Multigravity Assist Trajectory Planning with a Modified Ant Colony Algorithm , 2010, J. Aerosp. Comput. Inf. Commun..
[4] P. Cage,et al. Interplanetary trajectory optimization using a genetic algorithm , 1994 .
[5] David B. Spencer,et al. Optimal Spacecraft Rendezvous Using Genetic Algorithms , 2002 .
[6] Michael Cupples,et al. Interplanetary Mission Design Using Differential Evolution , 2007 .
[7] Dorothea Heiss-Czedik,et al. An Introduction to Genetic Algorithms. , 1997, Artificial Life.
[8] Günter Rudolph,et al. Convergence of evolutionary algorithms in general search spaces , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[9] Ossama Abdelkhalik,et al. Hidden Genes Genetic Algorithm for Multi-Gravity-Assist Trajectories Optimization , 2011 .
[10] G. Rauwolf,et al. Near-optimal low-thrust orbit transfers generated by a genetic algorithm , 1996 .
[11] Takeshi Yamada,et al. Genetic Algorithms, Path Relinking, and the Flowshop Sequencing Problem , 1998, Evolutionary Computation.
[12] M. Clerc,et al. Particle Swarm Optimization , 2006 .
[13] R. Storn,et al. Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .
[14] Fernando Alonso Zotes,et al. Particle swarm optimisation of interplanetary trajectories from Earth to Jupiter and Saturn , 2012, Eng. Appl. Artif. Intell..
[15] J. Doye,et al. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.
[16] R. Battin. An introduction to the mathematics and methods of astrodynamics , 1987 .
[17] Bruce A. Conway,et al. Automated Design of Multiphase Space Missions Using Hybrid Optimal Control , 2009 .
[18] Massimiliano Vasile,et al. An Inflationary Differential Evolution Algorithm for Space Trajectory Optimization , 2011, IEEE Transactions on Evolutionary Computation.
[19] C. Adcock. Sample size determination : a review , 1997 .
[20] Massimiliano Vasile,et al. On the Preliminary Design of Multiple Gravity-Assist Trajectories , 2011, ArXiv.
[21] Qibo Peng,et al. Low-thrust trajectory optimization for multiple target bodies tour mission , 2011 .
[22] Marco Locatelli,et al. On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..
[23] Robert H. Leary,et al. Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..
[24] D. Mortari,et al. On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .
[25] Ponnuthurai N. Suganthan,et al. An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[26] Oded Galor,et al. Introduction to Stability Analysis of Discrete Dynamical Systems , 2004 .
[27] G. Radice,et al. Advanced Global Optimisation Tools for Mission Analysis and Design , 2004 .
[28] J´nos Pintér,et al. Convergence properties of stochastic optimization procedures , 1984 .