Edge Element Methods for Maxwell's Equations with Strong Convergence for Gauss' Laws

In this paper we propose and investigate some edge element approximations for three Maxwell systems in three dimensions: the stationary Maxwell equations, the time-harmonic Maxwell equations and the time-dependent Maxwell equations. These approximations have three novel features. First, the resulting discrete edge element systems can be solved by some existing preconditioned solvers with optimal convergence rate independent of nite element meshes, including the stationary Maxwell equations. Second, they ensure the optimal strong convergence of the Gauss’ laws in some appropriate norm, in addition to the standard optimal convergence in energy-norm, under the general weak regularity assumptions that hold for both convex and non-convex polyhedral domains and for the discontinuous coecients that may have large jumps across the interfaces between dierent media. Finally, no saddle-point discrete systems are needed to solve for the stationary Maxwell equations, unlike most existing edge element schemes.

[1]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[2]  Jun Zou,et al.  Finite element convergence for the Darwin model to Maxwell's equations , 1997 .

[3]  Jun Zou,et al.  A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations , 2008, Math. Comput..

[4]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[5]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[6]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[7]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[8]  Jun Zou,et al.  Nonlinear Inexact Uzawa Algorithms for Linear and Nonlinear Saddle-point Problems , 2006, SIAM J. Optim..

[9]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[10]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[11]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[12]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[13]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[14]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[15]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[16]  Serge Nicaise,et al.  TRANSMISSION PROBLEMS FOR THE LAPLACE AND ELASTICITY OPERATORS: REGULARITY AND BOUNDARY INTEGRAL FORMULATION , 1999 .

[17]  Jean-Luc Guermond,et al.  Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements , 2011, Math. Comput..

[18]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[19]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[20]  Patrick Ciarlet,et al.  Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces , 2013, J. Num. Math..

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[24]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[25]  Jun Zou,et al.  Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions , 2004, Math. Comput..

[26]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[27]  Patrick Ciarlet,et al.  T-coercivity: Application to the discretization of Helmholtz-like problems , 2012, Comput. Math. Appl..

[28]  A. Bruce Langdon,et al.  On enforcing Gauss' law in electromagnetic particle-in-cell codes , 1992 .

[29]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[30]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[31]  Eric Sonnendrücker,et al.  GENERALIZED FORMULATIONS OF MAXWELL'S EQUATIONS FOR NUMERICAL VLASOV–MAXWELL SIMULATIONS , 2007 .

[32]  Monique Dauge,et al.  Singularities of Corner Problems and Problems of Corner Singularities , 1999 .

[33]  P. Ciarlet,et al.  Numerical analysis of the generalized Maxwell equations (with an elliptic correction) for charged particle simulations , 2009 .

[34]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[35]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[36]  B. M. Marder,et al.  A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .