Finite Volume Scheme with Local High Order Discretization of the Hydrostatic Equilibrium for the Euler Equations with External Forces
暂无分享,去创建一个
[1] Roberto Natalini,et al. Asymptotic High Order Mass-Preserving Schemes for a Hyperbolic Model of Chemotaxis , 2012, SIAM J. Numer. Anal..
[2] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[3] Christian Klingenberg,et al. A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity , 2015, SIAM J. Sci. Comput..
[4] L. Gosse. A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .
[5] Sean D. McDonald,et al. Development of a High-order Finite-volume Method for Unstructured Meshes , 2011 .
[6] Michael Dumbser,et al. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..
[7] Bruno Després,et al. Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.
[8] Bruno Després,et al. Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes , 2016, Math. Comput..
[9] Bruno Després. Lois de Conservations Eulériennes, Lagrangiennes et Méthodes Numériques , 2010 .
[10] Bruno Després,et al. Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport , 2013, Journal of Scientific Computing.
[11] Clinton P. T. Groth,et al. High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..
[12] Timothy J. Barth,et al. Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .
[13] Laurent Gosse,et al. Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes , 2012 .
[14] Samuel Kokh,et al. Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms , 2013, SIAM J. Sci. Comput..
[15] Laurent Gosse,et al. An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .
[16] Clinton P. T. Groth,et al. High-Order CENO Finite-Volume Schemes for Multi-Block Unstructured Mesh , 2011 .
[17] Christophe Berthon,et al. Asymptotic preserving HLL schemes , 2011 .
[18] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[19] Clinton P. T. Groth,et al. High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement , 2007 .
[20] E. Franck,et al. An asymptotic preserving scheme with the maximum principle for the model on distorded meshes , 2012 .
[21] Modified Finite Volume Nodal Scheme for Euler Equations with Gravity and Friction , 2014 .
[22] D. Griffin,et al. Finite-Element Analysis , 1975 .
[23] Bruno Després,et al. The structure of well-balanced schemes for Friedrichs systems with linear relaxation , 2016, Appl. Math. Comput..
[24] VIVIEN DESVEAUX,et al. Well-balanced schemes to capture non-explicit steady states: Ripa model , 2016, Math. Comput..
[25] E. Franck,et al. Asymptotic Preserving Finite Volumes Discretization For Non-Linear Moment Model On Unstructured Meshes , 2011 .
[26] P. Raviart,et al. GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .
[27] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[28] Christian Klingenberg,et al. A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity , 2016 .
[29] Blake Temple,et al. A Bound on the Total Variation of the Conserved Quantities for Solutions of a General Resonant Nonlinear Balance Law , 2004, SIAM J. Appl. Math..
[30] Emmanuelle Franck. Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs , 2012 .
[31] P. Frederickson,et al. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .
[32] Stéphane Dellacherie. Contribution à la l'analyse et à la simulation numériques des équations cinétiques décrivant un plasma chaud , 1998 .
[33] Laurent Gosse,et al. Locally Inertial Approximations of Balance Laws Arising in (1+1)-Dimensional General Relativity , 2015, SIAM J. Appl. Math..
[34] S. Mishra,et al. Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..
[35] Jun Luo,et al. A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..
[36] Christian Klingenberg,et al. A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential , 2014 .
[37] Shi Jin,et al. A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .
[38] O. J. Marlowe,et al. Numerical integration over simplexes and cones , 1956 .
[39] C. D. Levermore,et al. Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .
[40] Roberto Natalini,et al. A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis , 2012, 1211.4010.