Finite Volume Scheme with Local High Order Discretization of the Hydrostatic Equilibrium for the Euler Equations with External Forces

A new finite volume scheme for the Euler equations with gravity and friction source terms is presented. Classical finite volume schemes are not able to capture correctly the dynamics generated by the balance between convective terms and external forces. Our purpose is to develop a method better suited for dealing with this problem. To that end, firstly, we modify the Lagrangian+remap scheme by plugging the source terms into the fluxes using the Jin–Levermore procedure. The scheme obtained is able to capture the asymptotic limit induced by the friction (Asymptotic Preserving scheme) and to discretize with a good accuracy the steady-state linked to gravity (Well-Balanced scheme). Secondly, we present some properties about this scheme and introduce a modification for an arbitrary high order discretization of the hydrostatic steady-state.

[1]  Roberto Natalini,et al.  Asymptotic High Order Mass-Preserving Schemes for a Hyperbolic Model of Chemotaxis , 2012, SIAM J. Numer. Anal..

[2]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[3]  Christian Klingenberg,et al.  A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity , 2015, SIAM J. Sci. Comput..

[4]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[5]  Sean D. McDonald,et al.  Development of a High-order Finite-volume Method for Unstructured Meshes , 2011 .

[6]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[7]  Bruno Després,et al.  Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.

[8]  Bruno Després,et al.  Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes , 2016, Math. Comput..

[9]  Bruno Després Lois de Conservations Eulériennes, Lagrangiennes et Méthodes Numériques , 2010 .

[10]  Bruno Després,et al.  Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport , 2013, Journal of Scientific Computing.

[11]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[12]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[13]  Laurent Gosse,et al.  Asymptotic-Preserving and Well-Balanced schemes for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes , 2012 .

[14]  Samuel Kokh,et al.  Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms , 2013, SIAM J. Sci. Comput..

[15]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[16]  Clinton P. T. Groth,et al.  High-Order CENO Finite-Volume Schemes for Multi-Block Unstructured Mesh , 2011 .

[17]  Christophe Berthon,et al.  Asymptotic preserving HLL schemes , 2011 .

[18]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[19]  Clinton P. T. Groth,et al.  High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement , 2007 .

[20]  E. Franck,et al.  An asymptotic preserving scheme with the maximum principle for the model on distorded meshes , 2012 .

[21]  Modified Finite Volume Nodal Scheme for Euler Equations with Gravity and Friction , 2014 .

[22]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[23]  Bruno Després,et al.  The structure of well-balanced schemes for Friedrichs systems with linear relaxation , 2016, Appl. Math. Comput..

[24]  VIVIEN DESVEAUX,et al.  Well-balanced schemes to capture non-explicit steady states: Ripa model , 2016, Math. Comput..

[25]  E. Franck,et al.  Asymptotic Preserving Finite Volumes Discretization For Non-Linear Moment Model On Unstructured Meshes , 2011 .

[26]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[27]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[28]  Christian Klingenberg,et al.  A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity , 2016 .

[29]  Blake Temple,et al.  A Bound on the Total Variation of the Conserved Quantities for Solutions of a General Resonant Nonlinear Balance Law , 2004, SIAM J. Appl. Math..

[30]  Emmanuelle Franck Construction et analyse numérique de schéma asymptotic preserving sur maillages non structurés. Application au transport linéaire et aux systèmes de Friedrichs , 2012 .

[31]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[32]  Stéphane Dellacherie Contribution à la l'analyse et à la simulation numériques des équations cinétiques décrivant un plasma chaud , 1998 .

[33]  Laurent Gosse,et al.  Locally Inertial Approximations of Balance Laws Arising in (1+1)-Dimensional General Relativity , 2015, SIAM J. Appl. Math..

[34]  S. Mishra,et al.  Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..

[35]  Jun Luo,et al.  A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..

[36]  Christian Klingenberg,et al.  A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential , 2014 .

[37]  Shi Jin,et al.  A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .

[38]  O. J. Marlowe,et al.  Numerical integration over simplexes and cones , 1956 .

[39]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[40]  Roberto Natalini,et al.  A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis , 2012, 1211.4010.