Recursive Analysis Characterized as a Class of Real Recursive Functions

Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.

[1]  Olivier Bournez,et al.  Real Recursive Functions and Real Extensions of Recursive Functions , 2004, MCU.

[2]  Olivier Bournez,et al.  An Analog Characterization of Elementarily Computable Functions over the Real Numbers , 2004, ICALP.

[3]  Jerzy Mycka,et al.  Undecidability over Continuous Time , 2006, Log. J. IGPL.

[4]  Vasco Brattka,et al.  Computability over Topological Structures , 2003 .

[5]  Peter Clote,et al.  Computation Models and Function Algebras , 1999, Handbook of Computability Theory.

[6]  Olivier Bournez,et al.  Elementarily computable functions over the real numbers and R-sub-recursive functions , 2005, Theor. Comput. Sci..

[7]  P. Hartman Ordinary Differential Equations , 1965 .

[8]  Mark D. Bowles,et al.  U.S. Technological Enthusiasm and British Technological Skepticism in the Age of the Analog Brain , 1996, IEEE Ann. Hist. Comput..

[9]  Ann Copestake The Differential Analyser , 1940, Nature.

[10]  Cristopher Moore,et al.  An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..

[11]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[12]  M. Hogarth Does general relativity allow an observer to view an eternity in a finite time? , 1992 .

[13]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[14]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[15]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[16]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[17]  Olivier Bournez Complexite algorithmique des systemes dynamiques continus et hybrides , 1999 .

[18]  Eugene Asarin,et al.  Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1995, J. Comput. Syst. Sci..

[19]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[20]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[21]  Jerzy Mycka,et al.  Real recursive functions and their hierarchy , 2004, J. Complex..

[22]  D. R. HARTREE,et al.  The Differential Analyser , 1935, Nature.

[23]  William Thomson IV. On an instrument for calculating (∫φ(x) ψ (x)dx), the integral of the product of two given functions , 1876, Proceedings of the Royal Society of London.

[24]  Jerzy Mycka Infinite limits and R-recursive functions , 2003, Acta Cybern..

[25]  P. Odifreddi The theory of functions and sets of natural numbers , 1989 .

[26]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[27]  Cristopher Moore,et al.  An Analog Characterization of the Subrecursive Functions , 2000 .

[28]  Ecnica De Lisboa,et al.  Computational complexity of real valued recursive functions and analog circuits , 2001 .

[29]  Lee A. Rubel,et al.  The Extended Analog Computer , 1993 .

[30]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[31]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[32]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[33]  José Félix Costa,et al.  Analog computers and recursive functions over the reals , 2003, J. Complex..

[34]  Peter Clote,et al.  Computational Models and Function Algebras , 1994, LCC.