Recursive Analysis Characterized as a Class of Real Recursive Functions
暂无分享,去创建一个
[1] Olivier Bournez,et al. Real Recursive Functions and Real Extensions of Recursive Functions , 2004, MCU.
[2] Olivier Bournez,et al. An Analog Characterization of Elementarily Computable Functions over the Real Numbers , 2004, ICALP.
[3] Jerzy Mycka,et al. Undecidability over Continuous Time , 2006, Log. J. IGPL.
[4] Vasco Brattka,et al. Computability over Topological Structures , 2003 .
[5] Peter Clote,et al. Computation Models and Function Algebras , 1999, Handbook of Computability Theory.
[6] Olivier Bournez,et al. Elementarily computable functions over the real numbers and R-sub-recursive functions , 2005, Theor. Comput. Sci..
[7] P. Hartman. Ordinary Differential Equations , 1965 .
[8] Mark D. Bowles,et al. U.S. Technological Enthusiasm and British Technological Skepticism in the Age of the Analog Brain , 1996, IEEE Ann. Hist. Comput..
[9] Ann Copestake. The Differential Analyser , 1940, Nature.
[10] Cristopher Moore,et al. An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..
[11] Cristopher Moore,et al. Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..
[12] M. Hogarth. Does general relativity allow an observer to view an eternity in a finite time? , 1992 .
[13] V. Arnold,et al. Ordinary Differential Equations , 1973 .
[14] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[15] H. E. Rose. Subrecursion: Functions and Hierarchies , 1984 .
[16] Claude E. Shannon,et al. Mathematical Theory of the Differential Analyzer , 1941 .
[17] Olivier Bournez. Complexite algorithmique des systemes dynamiques continus et hybrides , 1999 .
[18] Eugene Asarin,et al. Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1995, J. Comput. Syst. Sci..
[19] A. Turing,et al. On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .
[20] István Németi,et al. Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .
[21] Jerzy Mycka,et al. Real recursive functions and their hierarchy , 2004, J. Complex..
[22] D. R. HARTREE,et al. The Differential Analyser , 1935, Nature.
[23] William Thomson. IV. On an instrument for calculating (∫φ(x) ψ (x)dx), the integral of the product of two given functions , 1876, Proceedings of the Royal Society of London.
[24] Jerzy Mycka. Infinite limits and R-recursive functions , 2003, Acta Cybern..
[25] P. Odifreddi. The theory of functions and sets of natural numbers , 1989 .
[26] R. O. Gandy,et al. COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .
[27] Cristopher Moore,et al. An Analog Characterization of the Subrecursive Functions , 2000 .
[28] Ecnica De Lisboa,et al. Computational complexity of real valued recursive functions and analog circuits , 2001 .
[29] Lee A. Rubel,et al. The Extended Analog Computer , 1993 .
[30] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[31] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[32] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[33] José Félix Costa,et al. Analog computers and recursive functions over the reals , 2003, J. Complex..
[34] Peter Clote,et al. Computational Models and Function Algebras , 1994, LCC.