DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗

We introduce a set of new interfacial energies for approximating the Euler number of level surfaces in the phase field (diffuse-interface) representation. These new formulae have simpler forms than those studied earlier in (Q. Du, C. Liu and X. Wang, Retrieving topological information for phase field models, SIAM J. Appl. Math., 65, 1913-1932, 2005), and do not contain higher order derivatives of the phase field function. Theoretical justifications are provided via formal asymptotic analysis, and practical validations are performed through numerical experiments. Relaxation and renormalization schemes are also developed to improve the robustness of the new energy functionals.

[1]  F. Santosa,et al.  A topology-preserving level set method for shape optimization , 2004, math/0405142.

[2]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[3]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[4]  Gunduz Caginalp,et al.  Phase field equations in the singular limit of sharp interface problems , 1992 .

[5]  Qiang Du,et al.  Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..

[6]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[7]  Xiaoqiang Wang,et al.  Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..

[8]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[9]  Roger Moser,et al.  A Higher Order Asymptotic Problem Related to Phase Transitions , 2005, SIAM J. Math. Anal..

[10]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[11]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[12]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[13]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[14]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[15]  Xiaolin Li,et al.  Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..

[16]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[17]  L. Evans Measure theory and fine properties of functions , 1992 .

[18]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[19]  David J. Torres,et al.  The point-set method: front-tracking without connectivity , 2000 .

[20]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[21]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[22]  Gretar Tryggvason,et al.  Computations of Boiling Flows , 2004 .

[23]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .