DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗
暂无分享,去创建一个
Qiang Du | Xiaoqiang Wang | Chun Liu | Q. Du | Xiaoqiang Wang | Chun Liu | Rolf J. Ryham | Rolf Ryham | R. Ryham
[1] F. Santosa,et al. A topology-preserving level set method for shape optimization , 2004, math/0405142.
[2] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[3] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[4] Gunduz Caginalp,et al. Phase field equations in the singular limit of sharp interface problems , 1992 .
[5] Qiang Du,et al. Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..
[6] T. Chan,et al. A Variational Level Set Approach to Multiphase Motion , 1996 .
[7] Xiaoqiang Wang,et al. Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..
[8] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[9] Roger Moser,et al. A Higher Order Asymptotic Problem Related to Phase Transitions , 2005, SIAM J. Math. Anal..
[10] Mathieu Desbrun,et al. Removing excess topology from isosurfaces , 2004, TOGS.
[11] Alex M. Andrew,et al. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .
[12] D. M. Anderson,et al. DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .
[13] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[14] Qiang Du,et al. ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .
[15] Xiaolin Li,et al. Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..
[16] Qiang Du,et al. A phase field formulation of the Willmore problem , 2005 .
[17] L. Evans. Measure theory and fine properties of functions , 1992 .
[18] S. Osher,et al. A level set approach for computing solutions to incompressible two-phase flow , 1994 .
[19] David J. Torres,et al. The point-set method: front-tracking without connectivity , 2000 .
[20] Tony F. Chan,et al. Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..
[21] Matthias Röger,et al. On a Modified Conjecture of De Giorgi , 2006 .
[22] Gretar Tryggvason,et al. Computations of Boiling Flows , 2004 .
[23] J. Lowengrub,et al. Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[24] Xiao Han,et al. A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[25] Long-Qing Chen. Phase-Field Models for Microstructure Evolution , 2002 .