DNA barcoding of arbuscular mycorrhizal fungi.

SUMMARY *Currently, no official DNA barcode region is defined for the Fungi. The COX1 gene DNA barcode is difficult to apply. The internal transcribed spacer (ITS) region has been suggested as a primary barcode candidate, but for arbuscular mycorrhizal fungi (AMF; Glomeromycota) the region is exceptionably variable and does not resolve closely related species. *DNA barcoding analyses were performed with datasets from several phylogenetic lineages of the Glomeromycota. We tested a c. 1500 bp fragment spanning small subunit (SSU), ITS region, and large subunit (LSU) nuclear ribosomal DNA for species resolving power. Subfragments covering the complete ITS region, c. 800 bp of the LSU rDNA, and three c. 400 bp fragments spanning the ITS2, the LSU-D1 or LSU-D2 domains were also analysed. *Barcode gap analyses did not resolve all species, but neighbour joining analyses, using Kimura two-parameter (K2P) distances, resolved all species when based on the 1500 bp fragment. The shorter fragments failed to separate closely related species. *We recommend the complete 1500 bp fragment as a basis for AMF DNA barcoding. This will also allow future identification of AMF at species level based on 400 or 1000 bp amplicons in deep sequencing approaches.

[1]  H. Dulieu,et al.  Nuclear DNA content of 11 fungal species in Glomales , 1998 .

[2]  I. Sanders,et al.  Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of internal transcribed spacers reported from Scutellospora castanea are of ascomycete origin. , 1999, Fungal genetics and biology : FG & B.

[3]  Daniel Schwarzott,et al.  A new fungal phylum, the Glomeromycota: phylogeny and evolution * * Dedicated to Manfred Kluge (Tech , 2001 .

[4]  P. Taberlet,et al.  DNA barcoding for ecologists. , 2009, Trends in ecology & evolution.

[5]  Xiaofei Xu,et al.  Intragenomic variability and pseudogenes of ribosomal DNA in stone flounder Kareius bicoloratus. , 2009, Molecular phylogenetics and evolution.

[6]  T. Boller,et al.  Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. , 2009 .

[7]  C. Mougel,et al.  Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. , 2007, The New phytologist.

[8]  Daniel Schwarzott,et al.  Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. , 2001, Molecular phylogenetics and evolution.

[9]  J. Palmer,et al.  Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia , 1995, Journal of Molecular Evolution.

[10]  F. Buscot,et al.  Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field , 2003, Mycorrhiza.

[11]  T. Bruns,et al.  Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). , 2000, Molecular phylogenetics and evolution.

[12]  H. Marschner,et al.  Role of VA-mycorrhiza in growth and mineral nutrition of apple (Malus pumila var.domestica) rootstock cuttings , 1989, Plant and Soil.

[13]  D. Redecker Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots , 2000, Mycorrhiza.

[14]  I. Kottke,et al.  Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest , 2008 .

[15]  J. Bousquet,et al.  Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants , 1993, Nature.

[16]  R. Callaway,et al.  MYCORRHIZAE INDIRECTLY ENHANCE COMPETITIVE EFFECTS OF AN INVASIVE FORB ON A NATIVE BUNCHGRASS , 1999 .

[17]  J. Young,et al.  The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. , 2009, The New phytologist.

[18]  Ian R. Sanders,et al.  Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei , 2005, Nature.

[19]  D. Redecker,et al.  Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. , 2008, The New phytologist.

[20]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[21]  D. Rizzo,et al.  Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. , 2007, The New phytologist.

[22]  D. Read,et al.  Epiparasitic plants specialized on arbuscular mycorrhizal fungi , 2002, Nature.

[23]  T. Boller,et al.  Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities , 1995 .

[24]  William G. Smith,et al.  Current status , 1984 .

[25]  R. Geremia,et al.  Potentiality of the cox1 gene in the taxonomic resolution of soil fungi. , 2010, FEMS microbiology letters.

[26]  M. V. van Oppen,et al.  Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. , 2003, Molecular biology and evolution.

[27]  S. Dickson The Arum-Paris continuum of mycorrhizal symbioses. , 2004, The New phytologist.

[28]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[29]  Thomas D. Bruns,et al.  Fungal Molecular Systematics , 1991 .

[30]  H. Marschner,et al.  Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover , 1991, Plant and Soil.

[31]  P. Lammers,et al.  Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as well as Lipid , 2003, Plant Physiology.

[32]  N. Baeshen,et al.  Biological Identifications Through DNA Barcodes , 2012 .

[33]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[34]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[35]  J. Bever,et al.  Arbuscular Mycorrhizal Fungi: More Diverse than Meets the Eye, and the Ecological Tale of Why , 2001 .

[36]  M. Chase,et al.  Barcoding of Plants and Fungi , 2009, Science.

[37]  J. Young,et al.  Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. , 2008, FEMS microbiology ecology.

[38]  J. Klironomos,et al.  VARIATION IN PLANT RESPONSE TO NATIVE AND EXOTIC ARBUSCULAR MYCORRHIZAL FUNGI , 2003 .

[39]  Robin Sen,et al.  UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. , 2005, The New phytologist.

[40]  A. Schüßler,et al.  The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes , 2010, The ISME Journal.

[41]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[42]  A. Watkinson,et al.  Multi-functionality and biodiversity in arbuscular mycorrhizas. , 1995, Trends in ecology & evolution.

[43]  André Nantel,et al.  The long hard road to a completed Candida albicans genome. , 2006, Fungal genetics and biology : FG & B.

[44]  A. Laidlaw,et al.  Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. , 2001, Chemosphere.

[45]  V. Brown,et al.  A test of mycorrhizal benefit in an early successional plant community , 1990 .

[46]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[47]  P. Marschner,et al.  Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere , 2005 .

[48]  D. Redecker,et al.  Glomalean fungi from the Ordovician. , 2000, Science.

[49]  Marc E. Colosimo,et al.  TreeViewJ: An application for viewing and analyzing phylogenetic trees , 2007, Source Code for Biology and Medicine.

[50]  A. Schüßler,et al.  DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. , 2009, The New phytologist.

[51]  D. Bhattacharya,et al.  Extensive Ribosomal DNA Genic Variation in the Columnar Cactus Lophocereus , 2001, Journal of Molecular Evolution.

[52]  I. Jakobsen,et al.  Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants , 1990 .

[53]  T. Pawlowska,et al.  Organization of genetic variation in individuals of arbuscular mycorrhizal fungi , 2004, Nature.

[54]  Peter J. Lammers,et al.  Nitrogen transfer in the arbuscular mycorrhizal symbiosis , 2005, Nature.

[55]  F. Wright,et al.  High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. , 2008, The New phytologist.

[56]  R. Summerbell,et al.  ITS barcodes for Trichophyton tonsurans and T. equinum. , 2007, Medical mycology.

[57]  A. Wiemken,et al.  Cooccurring Gentiana verna and Gentiana acaulis and Their Neighboring Plants in Two Swiss Upper Montane Meadows Harbor Distinct Arbuscular Mycorrhizal Fungal Communities , 2007, Applied and Environmental Microbiology.

[58]  A. Schüßler,et al.  'Glomus intraradices DAOM197198', a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. , 2009, The New phytologist.

[59]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[60]  D. Hawksworth,et al.  Always deposit vouchers , 2000 .

[61]  T. Taylor,et al.  Four hundred-million-year-old vesicular arbuscular mycorrhizae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Burleigh,et al.  A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization , 2003, Plant Molecular Biology.

[63]  Mark C. Brundrett Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis , 2009, Plant and Soil.

[64]  A. Fitter,et al.  Selectivity and functional diversity in arbuscular mycorrhizas of co‐occurring fungi and plants from a temperate deciduous woodland , 2002 .

[65]  A. Fitter Darkness visible: reflections on underground ecology , 2005 .

[66]  Austen R. D. Ganley,et al.  Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. , 2007, Genome research.

[67]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[68]  L. Tedersoo,et al.  Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. , 2008, The New phytologist.

[69]  G. R. Bisby,et al.  A Dictionary of the Fungi , 1943, Nature.

[70]  Daniel J. G. Lahr,et al.  Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. , 2009, BioTechniques.

[71]  J. Varga,et al.  The current status of species recognition and identification in Aspergillus , 2007, Studies in mycology.

[72]  P. Jeffries,et al.  Shifting the balance from qualitative to quantitative analysis of arbuscular mycorrhizal communities in field soils , 2009 .

[73]  Ian R. Sanders,et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity , 1998, Nature.

[74]  R. Augé Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis , 2001, Mycorrhiza.

[75]  T. Boller,et al.  Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. , 2004, The New phytologist.

[76]  I. Sanders Plant and arbuscular mycorrhizal fungal diversity – are we looking at the relevant levels of diversity and are we using the right techniques? , 2004 .

[77]  Christopher Quince,et al.  The rational exploration of microbial diversity , 2008, The ISME Journal.

[78]  Nils Hallenberg,et al.  Preserving accuracy in GenBank , 2008 .

[79]  D. Atkinson,et al.  Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment , 2004, Mycorrhiza.

[80]  J. Graham,et al.  Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi , 2000, Plant and Soil.

[81]  T. Boller,et al.  Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi , 2000 .

[82]  Marie-Christine Brun,et al.  TreeDyn: towards dynamic graphics and annotations for analyses of trees , 2006, BMC Bioinformatics.

[83]  A. Fitter,et al.  Ploughing up the wood-wide web? , 1998, Nature.

[84]  A. Schüßler,et al.  Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp. nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. , 2007, Mycological research.

[85]  C. Walker Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)- a possible way forward , 1992 .

[86]  J. W. Taylor,et al.  Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP™ , 1997 .

[87]  D. Schachtman,et al.  Variation in rDNA ITS sequences in Glomus mosseae and Gigaspora margarita spores from a permanent pasture , 2000 .

[88]  Rytas Vilgalys,et al.  Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples , 2005, Applied and Environmental Microbiology.

[89]  S. Banke,et al.  Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis , 2002 .

[90]  Yeting Zhang,et al.  The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus). , 2008, Genome research.

[91]  M. Nei,et al.  The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[92]  王丽华,et al.  国际生命条形码计划—DNA Barcoding , 2009 .

[93]  D. Redecker,et al.  Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters , 2001 .

[94]  I. Sanders,et al.  Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi , 2001, Nature.

[95]  Manuela Giovannetti,et al.  Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. , 2009, The New phytologist.

[96]  R. Augé Arbuscular mycorrhizae and soil/plant water relations , 2004 .

[97]  D. Cordell,et al.  The story of phosphorus: Global food security and food for thought , 2009 .

[98]  P. Marschner,et al.  Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize , 2003, Plant and Soil.

[99]  T. Bruns,et al.  Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots , 1992, Applied and environmental microbiology.

[100]  Tao Li,et al.  Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China , 2007, Mycorrhiza.

[101]  Daniel Schwarzott,et al.  Gerdemannia gen. nov., a genus separated from Glomus, and Gerdemanniaceae fam. nov., a new family in the Glomeromycota. , 2004, Mycological research.

[102]  J. P. Thompson Soil sterilization methods to show VA-mycorrhizae aid P and Zn nutrition of wheat in Vertisols. , 1990 .

[103]  A. Schüßler,et al.  Diversispora celata sp. nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. , 2009, The New phytologist.

[104]  K. Ineichen,et al.  The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment , 2007, Mycorrhiza.

[105]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[106]  C. Cristani,et al.  Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. , 2009, Canadian journal of microbiology.

[107]  Thomas J. White,et al.  PCR protocols: a guide to methods and applications. , 1990 .

[108]  J. Graham,et al.  Functioning of mycorrhizal associations along the mutualism–parasitism continuum* , 1997 .

[109]  D. van Tuinen,et al.  Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA‐targeted nested PCR , 1998, Molecular ecology.

[110]  Bin Zhao,et al.  PCR in Studies of AM Fungi: from Primers to Application , 1998 .

[111]  C. Walker,et al.  Populations of endogonaceous fungi at two locations in central Iowa , 1982 .

[112]  A. Schüßler,et al.  Glomeromycota rRNA genes—the diversity of myths? , 2003, Mycorrhiza.

[113]  Jos Houbraken,et al.  Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case , 2007, Proceedings of the National Academy of Sciences.

[114]  S. Rosendahl,et al.  Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture , 2009, Molecular ecology.

[115]  T. Wubet,et al.  Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. , 2006, Mycological research.

[116]  J. Bever,et al.  Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. , 2008, The New phytologist.

[117]  J. C. Dodd,et al.  Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi , 1996 .

[118]  R. Courtecuisse,et al.  A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage , 2007, Mycological Progress.

[119]  G. Singer,et al.  Benchmarking DNA barcodes: An assessment using available primate sequences. , 2006, Genome.

[120]  Daniel Schwarzott,et al.  A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores , 2001, Mycorrhiza.

[121]  Erik Kristiansson,et al.  An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. , 2009, The New phytologist.

[122]  L. Frézal,et al.  Four years of DNA barcoding: current advances and prospects. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[123]  H. Sawaki,et al.  Phylogenetic position of an arbuscular mycorrhizal fungus,Acaulospora gerdemannii, and its synanamorphGlomus leptotichum, based upon 18S rRNA gene sequence , 1998 .

[124]  P. Hebert,et al.  Identification of Birds through DNA Barcodes , 2004, PLoS biology.

[125]  M. V. D. van der Heijden,et al.  The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. , 2006, The New phytologist.

[126]  R. Hamelin,et al.  Fungal pathogen (mis-) identifications: a case study with DNA barcodes on Melampsora rusts of aspen and white poplar. , 2009, Mycological research.

[127]  D. van Tuinen,et al.  Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland , 2001, Mycorrhiza.

[128]  W. John Kress,et al.  A DNA barcode for land plants , 2009, Proceedings of the National Academy of Sciences.

[129]  G. Benny,et al.  Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae , 1990 .

[130]  B. Lang,et al.  The complete Glomus intraradices mitochondrial genome sequence--a milestone in mycorrhizal research. , 2009, The New phytologist.

[131]  N. Gyllenstrand,et al.  Isolation and characterization of polymorphic microsatellite markers in the blowflies Lucilia illustris and Lucilia sericata , 2002 .

[132]  D. S. Hayman,et al.  Plant growth responses to vesicular-arbuscular mycorrhiza. XV: Influence of soil pH on the symbiotic efficiency of different endophytes , 1985 .

[133]  A. Fitter,et al.  Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non‐scripta (bluebell) in a seminatural woodland , 1999 .

[134]  A. Leuchtmann,et al.  Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland , 2007, Mycorrhiza.

[135]  P. Bonfante,et al.  Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota[W] , 2008, The Plant Cell Online.

[136]  K. Seifert Progress towards DNA barcoding of fungi , 2009, Molecular ecology resources.

[137]  Erik Kristiansson,et al.  Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota) , 2008, BMC Evolutionary Biology.

[138]  E. Stukenbrock,et al.  Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores , 2005, Molecular ecology.

[139]  Alexandros Stamatakis,et al.  Evolutionary placement of short sequence reads on multi-core architectures , 2010, ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010.

[140]  R. Aroca,et al.  How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? , 2007, The New phytologist.

[141]  D. Hawksworth The magnitude of fungal diversity: the 1.5 million species estimate revisited * * Paper presented at , 2001 .

[142]  M. Wiemers,et al.  Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae) , 2007, Frontiers in Zoology.

[143]  K. Akiyama,et al.  Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi , 2005, Nature.

[144]  M. Zobel,et al.  Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. , 2009, The New phytologist.

[145]  S. Rosendahl Communities, populations and individuals of arbuscular mycorrhizal fungi. , 2008, The New phytologist.

[146]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[147]  Erik Kristiansson,et al.  The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. , 2009, FEMS microbiology letters.

[148]  M. Vosátka,et al.  Quality control of arbuscular mycorrhizal fungi inoculum in Europe , 2002 .

[149]  F. Buscot,et al.  Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. , 2007, Environmental microbiology.

[150]  K. Seifert,et al.  Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium , 2009, Molecular ecology resources.

[151]  A CHECK-LIST OF MYCORRHIZA IN THE BRITISH FLORA* , 1987 .

[152]  E. Grace,et al.  More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. , 2009, The New phytologist.

[153]  S. Carroll,et al.  More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. , 2005, Molecular biology and evolution.

[154]  J. Morton,et al.  Phylogenetic analysis of the Glomeromycota by partial β-tubulin gene sequences , 2009, Mycorrhiza.

[155]  R. Azcón,et al.  Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress , 2003 .

[156]  B. Wang,et al.  Phylogenetic distribution and evolution of mycorrhizas in land plants , 2006, Mycorrhiza.

[157]  P. Tinker,et al.  Phosphate flow into mycorrhizal roots , 1973 .

[158]  Bernard De Baets,et al.  TaxonGap: a visualization tool for intra- and inter-species variation among individual biomarkers , 2008, Bioinform..

[159]  V. Bianciotto,et al.  Quantification of the nuclear DNA content of two arbuscular mycorrhizal fungi , 1992 .

[160]  Jenny L. McCune,et al.  The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity , 2000 .

[161]  P. Christie,et al.  Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. , 2001, Chemosphere.

[162]  T. Wubet,et al.  Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. , 2004, The New phytologist.

[163]  A. Viera,et al.  DNA content of vesicular-arbuscular mycorrhizal fungal spores. , 1990 .

[164]  J. P. Grime,et al.  Floristic diversity in a model system using experimental microcosms , 1987, Nature.