Thurston ’ s work on surfaces

This book is an exposition of Thurston’s theory of surfaces: measured foliations, the compactification of Teichmuller space and the classification of diffeomorphisms. The mathematical content is roughly the following. For a surface M (let us say closed, orientable, of genus g > 1), one denotes by S the set of isotopy classes of simple closed curves in M . For α, β ∈ S, one denotes by i(α, β) the minimum number of geometric intersection points of α′ with β′, where α′ (resp. β′) is a simple curve in the class α (resp. β). This induces a map i∗ : S → R+ which turns out to be injective. In fact, if one projectivizes R+ \ 0, then i∗ induces an injection i∗ : S → P (R+) which endows S with a nontrivial topology. Here R+ is endowed with the weak topology ( = product topology). Two curves α, β ∈ S are “close” in P (R+) if, up to a multiple, they are made up of more or less the same strands going more or less the same direction. This is very different from saying that the curves are homotopic. The limits of curves are naturally interpreted as projective classes of “measured foliations”, that is, foliations that have an “invariant” transverse distance, and that have certain kinds of singularities (wellknown in the theory of quadratic differentials, or in smectic liquid crystals). The space of measured foliations considered in R+ (or in P (R+)) is denoted by MF (resp. PMF). One shows that MF ≃ R6g−6 and PMF ≃ S6g−7. In P (R+), the space PMF(M) and the Teichmuller space T (M) glue together into a (6g − 6)-dimensional ball: T (M) = T (M) ∪ PMF(M) = D6g−6. The group Diff(M) acts continuously on this compactification of T (this is hence a “natural” compactification). Hence any φ ∈ Diff(M) has a fixed point in T (M) (Brouwer) and the analysis of this fixed point shows that (up to isotopy) each φ is either a hyperbolic isometry of M , is “Anosov-like” (the word is “pseudo-Anosov”), or else is

[1]  George S. Springer,et al.  Introduction to Riemann Surfaces , 1959 .

[2]  Marvin J. Greenberg Lectures on algebraic topology , 1967 .

[3]  S. Smale Differentiable dynamical systems , 1967 .

[4]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[5]  Normal all pseudo-Anosov subgroups of mapping class groups , 1999, math/9906133.

[6]  F. Raymond Classification of the actions of the circle on 3-manifolds , 1968 .

[7]  R. Fintushel Local $S^{1}$ actions on $3$-manifolds. , 1976 .

[8]  Stephen Smale,et al.  DIFFEOMORPHISMS OF THE 2-SPHERE , 1959 .

[9]  Friedhelm Waldhausen,et al.  On irreducible 3-manifolds which are sufficiently large * , 2010 .

[10]  Steven A. Bleiler,et al.  Automorphisms of Surfaces after Nielsen and Thurston , 1988 .

[11]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[12]  A. Gomez,et al.  Flows and diffeomorphisms , 1998 .

[13]  E. Hironaka Small dilatation mapping classes coming from the simplest hyperbolic braid , 2009, 0909.4517.

[14]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[15]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[16]  Peter Brinkmann A Note on Pseudo-Anosov Maps with Small Growth Rate , 2004, Exp. Math..

[17]  Jean-Pierre Otal Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .

[18]  P. A. Smith A Theorem on Fixed Points for Periodic Transformations , 1934 .

[19]  C. Leininger,et al.  Small dilatation pseudo-Anosov homeomorphisms and 3-manifolds , 2011 .

[20]  I. Agol Ideal Triangulations of Pseudo-Anosov Mapping Tori , 2010, 1008.1606.

[21]  J. Birman,et al.  Fixed points of pseudo-Anosov diffeomorphisms of surfaces , 1982 .

[22]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[23]  R. Bishop,et al.  Manifolds of negative curvature , 1969 .

[24]  John H. Hubbard,et al.  Quadratic differentials and foliations , 1979 .

[25]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[26]  Hiroyuki Minakawa Examples of Pseudo-Anosov Homeomorphisms with Small Dilatations , 2006 .

[27]  W. Veech The Teichmuller Geodesic Flow , 1986 .

[28]  W. Thurston,et al.  A presentation for the mapping class group of a closed orientable surface , 1980 .

[29]  R. Bowen ENTROPY AND THE FUNDAMENTAL GROUP. , 1978 .

[30]  J. Cerf Sur les difféomorphismes de la sphère de dimension trois (Γ4 = o) , 1968 .

[31]  Peter Brinkmann An Implementation of the Bestvina–Handel Algorithm for Surface Homeomorphisms , 2000, Exp. Math..

[32]  Richards T. Miller Geodesic laminations from Nielsen's viewpoint , 1982 .

[33]  David Fried Flow equivalence, hyperbolic systems and a new zeta function for flows , 1982 .

[34]  J. Cheeger,et al.  Comparison theorems in Riemannian geometry , 1975 .

[35]  I. Kra On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces , 1981 .

[36]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[37]  T. Hall,et al.  On period minimal pseudo-Anosov braids , 2008 .

[38]  M. Handel Global shadowing of pseudo-Anosov homeomorphisms , 1985, Ergodic Theory and Dynamical Systems.

[39]  R. T. Seeley,et al.  Extension of ^{∞} functions defined in a half space , 1964 .

[40]  S. Matsumoto Topological entropy and Thurston's norm of atoroidal surface bundles over the circle , 1987 .

[41]  Nathan M. Dunfield,et al.  Closed surface bundles of least volume , 2010, 1002.3423.

[42]  Counting Reducible Matrices, Polynomials, and Surface and Free Group Automorphisms , 2006, math/0604489.

[43]  The lower central series and pseudo-Anosov dilatations , 2006, math/0603675.

[44]  Robert C. Penner,et al.  A construction of pseudo-Anosov homeomorphisms , 1988 .

[45]  John Harer,et al.  The cohomology of the moduli space of curves , 1988 .

[46]  Curtis T. McMullen,et al.  Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations , 2000 .

[47]  W. Parry Intrinsic Markov chains , 1964 .

[48]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[49]  J. Los On the forcing relation for surface homeomorphisms , 1997 .

[50]  Periodic points of Hamiltonian surface diffeomorphisms , 2003, math/0303296.

[51]  J. Harer,et al.  Combinatorics of Train Tracks. , 1991 .

[52]  A. Hildebrand,et al.  The asymptotic behavior of least pseudo-Anosov dilatations , 2009 .

[53]  F. Bonahon,et al.  Low Dimensional Topology: The classification of Seifert fibred 3-orbifolds , 1985 .

[54]  Mladen Bestvina,et al.  Train-tracks for surface homeomorphisms , 1995 .

[55]  F. Waldhausen Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II , 1967 .

[56]  Sérgio R. Fenley End periodic surface homeomorphisms and 3-manifolds , 1997 .

[57]  Erwan Lanneau,et al.  On the minimum dilatation of braids on punctured discs , 2010, 1004.5344.

[58]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[59]  H. Coxeter,et al.  Introduction to Geometry , 1964, The Mathematical Gazette.

[60]  M. Handel The forcing partial order on the three times punctured disk , 1997, Ergodic Theory and Dynamical Systems.

[61]  K. Fujiwara Subgroups generated by two pseudo-Anosov elements in a mapping class group. II. Uniform bound on exponents , 2009, 0908.0995.

[62]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[63]  V. Poénaru Travaux de Thurston sur les difféomorphismes des surfaces et l'espace de Teichmüller , 1980 .

[64]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[65]  Anthony Manning,et al.  Topological Entropy and the First Homology Group , 1975 .

[66]  J. Mangahas A recipe for short-word pseudo-Anosovs , 2010, 1008.2217.

[67]  Heinrich W. Guggenheimer,et al.  Geometries and Groups , 1989 .

[68]  R. Penner Bounds on least dilatations , 1991 .

[69]  I. Shafarevich Basic algebraic geometry , 1974 .

[70]  P. Orlik,et al.  On 3-manifolds with local SO(2) action , 1969 .

[71]  William P. Thurston,et al.  A norm for the homology of 3-manifolds , 1986 .

[72]  David Fried The geometry of cross sections to flows , 1982 .

[73]  John Stallings,et al.  Group Theory and Three-dimensional Manifolds , 1971 .

[74]  Daniel Fried Cross sections to flows , 1976 .

[75]  Alexander Lubotzky,et al.  Abelian and solvable subgroups of the mapping class groups , 1983 .

[76]  H. Seifert,et al.  Topologie Dreidimensionaler Gefaserter Räume , 1933 .

[77]  W. B. R. Lickorish,et al.  A finite set of generators for the homeotopy group of a 2-manifold , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[78]  Bernard Malgrange,et al.  Ideals of differentiable functions , 1966 .

[79]  N. Steenrod Topology of Fibre Bundles , 1951 .

[80]  F. Raymond,et al.  3-dimensional Lorentz space-forms and Seifert fiber spaces , 1985 .

[81]  J. Stallings On fibering certain 3-manifolds , 1961 .

[82]  J. Nielsen,et al.  Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen , 1927 .

[83]  P. Scott,et al.  The geometries of 3-manifolds , 1983 .

[84]  E. Primrose,et al.  Subgroups of Teichmuller Modular Groups , 1992 .

[85]  B. Marcus,et al.  Unique ergodicity for horocycle foliations , 1977 .

[86]  M. Bauer Examples of pseudo-Anosov homeomorphisms , 1992 .

[87]  Fifteen problems about the mapping class groups , 2006, math/0608325.

[88]  William Perrizo,et al.  The Structure of Attractors in Dynamical Systems , 1978 .

[89]  Benson Farb Some problems on mapping class groups and moduli space , 2006, math/0606432.

[90]  Won Taek Song,et al.  The Minimum Dilatation of Pseudo-Anosov 5-Braids , 2005, Exp. Math..

[91]  J. Nielsen Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. II , 1927 .

[92]  Gérard Rauzy,et al.  Échanges d'intervalles et transformations induites , 1979 .

[93]  Jin-Hwan Cho,et al.  The Minimal Dilatation of a Genus-Two Surface , 2008, Exp. Math..

[94]  D. Schattschneider The Plane Symmetry Groups: Their Recognition and Notation , 1978 .

[95]  D. Rolfsen Knots and Links , 2003 .

[96]  W. Thurston,et al.  New proofs of some results of Nielsen , 1985 .

[97]  D. Asimov,et al.  Unremovable closed orbits , 1983 .

[98]  A. Katok,et al.  Smooth models of Thurston's pseudo-Anosov maps , 1982 .

[99]  C. W. Kilmister,et al.  CELESTIAL MECHANICS, PART I , 1973 .

[100]  L. Bers An extremal problem for quasiconformal mappings and a theorem by Thurston , 1978 .

[101]  D. Tischler On fibering certain foliated manifolds overS1 , 1970 .

[102]  Benson Farb Problems on Mapping Class Groups And Related Topics , 2006 .

[103]  M. Hamstrom,et al.  Homotopy groups of the space of homeomorphisms on a $2$-manifold , 1966 .

[104]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[105]  J. Nielsen Abbildungsklassen Endlicher Ordnung , 1942 .

[106]  D. Sullivan Cycles for the dynamical study of foliated manifolds and complex manifolds , 1976 .

[107]  N. V. Ivanov Nielsen numbers of mappings of surfaces , 1984 .

[108]  James McCool,et al.  Some finitely presented subgroups of the automorphism group of a free group , 1975 .

[109]  Random walks on the mapping class group , 2006, math/0604433.

[110]  R. Palais Local triviality of the restriction map for embeddings , 1960 .

[111]  A. Fathi Démonstration d'un théorème de Penner sur la composition des twists de Dehn , 1992 .

[112]  E. Vogt,et al.  Zur topologie gefaserter dreidimensionaler mannigfaltigkeiten , 1967 .

[113]  B. Kolev Periodic orbits of period 3 in the disc , 1994, 0712.0056.

[114]  W. Abikoff,et al.  The real analytic theory of Teichmüller space , 1980 .

[115]  On groups generated by two positive multi-twists: Teichmuller curves and Lehmer's number , 2003, math/0304163.

[116]  D. Epstein Curves on 2-manifolds and isotopies , 1966 .

[117]  A “Tits-alternative” for subgroups of surface mapping class groups , 1985 .

[118]  D. Osin,et al.  Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces , 2011, 1111.7048.

[119]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[120]  M. Bauer An upper bound for the least dilatation , 1992 .

[121]  E. Kin,et al.  A family of pseudo-Anosov braids with small dilatation , 2005, 0904.0594.

[122]  F. Bonahon The geometry of Teichmüller space via geodesic currents , 1988 .

[123]  D. Sullivan,et al.  Currents, flows and diffeomorphisms , 1975 .

[124]  David Fried Growth rate of surface homeomorphisms and flow equivalence , 1985, Ergodic Theory and Dynamical Systems.

[125]  J. Thiffeault,et al.  On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus , 2009, 0905.1302.

[126]  José Montesinos,et al.  Classical tessellations and three-manifolds , 1987 .