Thurston ’ s work on surfaces
暂无分享,去创建一个
Valentin Poénaru | Albert Fathi | A. Fathi | François Laudenbach | F. Laudenbach | V. Poénaru | Djun Kim | Dan Margalit
[1] George S. Springer,et al. Introduction to Riemann Surfaces , 1959 .
[2] Marvin J. Greenberg. Lectures on algebraic topology , 1967 .
[3] S. Smale. Differentiable dynamical systems , 1967 .
[4] Samuel Karlin,et al. A First Course on Stochastic Processes , 1968 .
[5] Normal all pseudo-Anosov subgroups of mapping class groups , 1999, math/9906133.
[6] F. Raymond. Classification of the actions of the circle on 3-manifolds , 1968 .
[7] R. Fintushel. Local $S^{1}$ actions on $3$-manifolds. , 1976 .
[8] Stephen Smale,et al. DIFFEOMORPHISMS OF THE 2-SPHERE , 1959 .
[9] Friedhelm Waldhausen,et al. On irreducible 3-manifolds which are sufficiently large * , 2010 .
[10] Steven A. Bleiler,et al. Automorphisms of Surfaces after Nielsen and Thurston , 1988 .
[11] W. Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .
[12] A. Gomez,et al. Flows and diffeomorphisms , 1998 .
[13] E. Hironaka. Small dilatation mapping classes coming from the simplest hyperbolic braid , 2009, 0909.4517.
[14] C. Rourke,et al. Introduction to Piecewise-Linear Topology , 1972 .
[15] W. Thurston. The geometry and topology of 3-manifolds , 1979 .
[16] Peter Brinkmann. A Note on Pseudo-Anosov Maps with Small Growth Rate , 2004, Exp. Math..
[17] Jean-Pierre Otal. Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .
[18] P. A. Smith. A Theorem on Fixed Points for Periodic Transformations , 1934 .
[19] C. Leininger,et al. Small dilatation pseudo-Anosov homeomorphisms and 3-manifolds , 2011 .
[20] I. Agol. Ideal Triangulations of Pseudo-Anosov Mapping Tori , 2010, 1008.1606.
[21] J. Birman,et al. Fixed points of pseudo-Anosov diffeomorphisms of surfaces , 1982 .
[22] J. Birman. Braids, Links, and Mapping Class Groups. , 1975 .
[23] R. Bishop,et al. Manifolds of negative curvature , 1969 .
[24] John H. Hubbard,et al. Quadratic differentials and foliations , 1979 .
[25] William S. Massey,et al. Algebraic Topology: An Introduction , 1977 .
[26] Hiroyuki Minakawa. Examples of Pseudo-Anosov Homeomorphisms with Small Dilatations , 2006 .
[27] W. Veech. The Teichmuller Geodesic Flow , 1986 .
[28] W. Thurston,et al. A presentation for the mapping class group of a closed orientable surface , 1980 .
[29] R. Bowen. ENTROPY AND THE FUNDAMENTAL GROUP. , 1978 .
[30] J. Cerf. Sur les difféomorphismes de la sphère de dimension trois (Γ4 = o) , 1968 .
[31] Peter Brinkmann. An Implementation of the Bestvina–Handel Algorithm for Surface Homeomorphisms , 2000, Exp. Math..
[32] Richards T. Miller. Geodesic laminations from Nielsen's viewpoint , 1982 .
[33] David Fried. Flow equivalence, hyperbolic systems and a new zeta function for flows , 1982 .
[34] J. Cheeger,et al. Comparison theorems in Riemannian geometry , 1975 .
[35] I. Kra. On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces , 1981 .
[36] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[37] T. Hall,et al. On period minimal pseudo-Anosov braids , 2008 .
[38] M. Handel. Global shadowing of pseudo-Anosov homeomorphisms , 1985, Ergodic Theory and Dynamical Systems.
[39] R. T. Seeley,et al. Extension of ^{∞} functions defined in a half space , 1964 .
[40] S. Matsumoto. Topological entropy and Thurston's norm of atoroidal surface bundles over the circle , 1987 .
[41] Nathan M. Dunfield,et al. Closed surface bundles of least volume , 2010, 1002.3423.
[42] Counting Reducible Matrices, Polynomials, and Surface and Free Group Automorphisms , 2006, math/0604489.
[43] The lower central series and pseudo-Anosov dilatations , 2006, math/0603675.
[44] Robert C. Penner,et al. A construction of pseudo-Anosov homeomorphisms , 1988 .
[45] John Harer,et al. The cohomology of the moduli space of curves , 1988 .
[46] Curtis T. McMullen,et al. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations , 2000 .
[47] W. Parry. Intrinsic Markov chains , 1964 .
[48] Benson Farb,et al. A primer on mapping class groups , 2013 .
[49] J. Los. On the forcing relation for surface homeomorphisms , 1997 .
[50] Periodic points of Hamiltonian surface diffeomorphisms , 2003, math/0303296.
[51] J. Harer,et al. Combinatorics of Train Tracks. , 1991 .
[52] A. Hildebrand,et al. The asymptotic behavior of least pseudo-Anosov dilatations , 2009 .
[53] F. Bonahon,et al. Low Dimensional Topology: The classification of Seifert fibred 3-orbifolds , 1985 .
[54] Mladen Bestvina,et al. Train-tracks for surface homeomorphisms , 1995 .
[55] F. Waldhausen. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II , 1967 .
[56] Sérgio R. Fenley. End periodic surface homeomorphisms and 3-manifolds , 1997 .
[57] Erwan Lanneau,et al. On the minimum dilatation of braids on punctured discs , 2010, 1004.5344.
[58] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[59] H. Coxeter,et al. Introduction to Geometry , 1964, The Mathematical Gazette.
[60] M. Handel. The forcing partial order on the three times punctured disk , 1997, Ergodic Theory and Dynamical Systems.
[61] K. Fujiwara. Subgroups generated by two pseudo-Anosov elements in a mapping class group. II. Uniform bound on exponents , 2009, 0908.0995.
[62] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[63] V. Poénaru. Travaux de Thurston sur les difféomorphismes des surfaces et l'espace de Teichmüller , 1980 .
[64] H. Coxeter,et al. Generators and relations for discrete groups , 1957 .
[65] Anthony Manning,et al. Topological Entropy and the First Homology Group , 1975 .
[66] J. Mangahas. A recipe for short-word pseudo-Anosovs , 2010, 1008.2217.
[67] Heinrich W. Guggenheimer,et al. Geometries and Groups , 1989 .
[68] R. Penner. Bounds on least dilatations , 1991 .
[69] I. Shafarevich. Basic algebraic geometry , 1974 .
[70] P. Orlik,et al. On 3-manifolds with local SO(2) action , 1969 .
[71] William P. Thurston,et al. A norm for the homology of 3-manifolds , 1986 .
[72] David Fried. The geometry of cross sections to flows , 1982 .
[73] John Stallings,et al. Group Theory and Three-dimensional Manifolds , 1971 .
[74] Daniel Fried. Cross sections to flows , 1976 .
[75] Alexander Lubotzky,et al. Abelian and solvable subgroups of the mapping class groups , 1983 .
[76] H. Seifert,et al. Topologie Dreidimensionaler Gefaserter Räume , 1933 .
[77] W. B. R. Lickorish,et al. A finite set of generators for the homeotopy group of a 2-manifold , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.
[78] Bernard Malgrange,et al. Ideals of differentiable functions , 1966 .
[79] N. Steenrod. Topology of Fibre Bundles , 1951 .
[80] F. Raymond,et al. 3-dimensional Lorentz space-forms and Seifert fiber spaces , 1985 .
[81] J. Stallings. On fibering certain 3-manifolds , 1961 .
[82] J. Nielsen,et al. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen , 1927 .
[83] P. Scott,et al. The geometries of 3-manifolds , 1983 .
[84] E. Primrose,et al. Subgroups of Teichmuller Modular Groups , 1992 .
[85] B. Marcus,et al. Unique ergodicity for horocycle foliations , 1977 .
[86] M. Bauer. Examples of pseudo-Anosov homeomorphisms , 1992 .
[87] Fifteen problems about the mapping class groups , 2006, math/0608325.
[88] William Perrizo,et al. The Structure of Attractors in Dynamical Systems , 1978 .
[89] Benson Farb. Some problems on mapping class groups and moduli space , 2006, math/0606432.
[90] Won Taek Song,et al. The Minimum Dilatation of Pseudo-Anosov 5-Braids , 2005, Exp. Math..
[91] J. Nielsen. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. II , 1927 .
[92] Gérard Rauzy,et al. Échanges d'intervalles et transformations induites , 1979 .
[93] Jin-Hwan Cho,et al. The Minimal Dilatation of a Genus-Two Surface , 2008, Exp. Math..
[94] D. Schattschneider. The Plane Symmetry Groups: Their Recognition and Notation , 1978 .
[95] D. Rolfsen. Knots and Links , 2003 .
[96] W. Thurston,et al. New proofs of some results of Nielsen , 1985 .
[97] D. Asimov,et al. Unremovable closed orbits , 1983 .
[98] A. Katok,et al. Smooth models of Thurston's pseudo-Anosov maps , 1982 .
[99] C. W. Kilmister,et al. CELESTIAL MECHANICS, PART I , 1973 .
[100] L. Bers. An extremal problem for quasiconformal mappings and a theorem by Thurston , 1978 .
[101] D. Tischler. On fibering certain foliated manifolds overS1 , 1970 .
[102] Benson Farb. Problems on Mapping Class Groups And Related Topics , 2006 .
[103] M. Hamstrom,et al. Homotopy groups of the space of homeomorphisms on a $2$-manifold , 1966 .
[104] J. Stillwell. Classical topology and combinatorial group theory , 1980 .
[105] J. Nielsen. Abbildungsklassen Endlicher Ordnung , 1942 .
[106] D. Sullivan. Cycles for the dynamical study of foliated manifolds and complex manifolds , 1976 .
[107] N. V. Ivanov. Nielsen numbers of mappings of surfaces , 1984 .
[108] James McCool,et al. Some finitely presented subgroups of the automorphism group of a free group , 1975 .
[109] Random walks on the mapping class group , 2006, math/0604433.
[110] R. Palais. Local triviality of the restriction map for embeddings , 1960 .
[111] A. Fathi. Démonstration d'un théorème de Penner sur la composition des twists de Dehn , 1992 .
[112] E. Vogt,et al. Zur topologie gefaserter dreidimensionaler mannigfaltigkeiten , 1967 .
[113] B. Kolev. Periodic orbits of period 3 in the disc , 1994, 0712.0056.
[114] W. Abikoff,et al. The real analytic theory of Teichmüller space , 1980 .
[115] On groups generated by two positive multi-twists: Teichmuller curves and Lehmer's number , 2003, math/0304163.
[116] D. Epstein. Curves on 2-manifolds and isotopies , 1966 .
[117] A “Tits-alternative” for subgroups of surface mapping class groups , 1985 .
[118] D. Osin,et al. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces , 2011, 1111.7048.
[119] Ian Agol,et al. The virtual Haken conjecture , 2012, 1204.2810.
[120] M. Bauer. An upper bound for the least dilatation , 1992 .
[121] E. Kin,et al. A family of pseudo-Anosov braids with small dilatation , 2005, 0904.0594.
[122] F. Bonahon. The geometry of Teichmüller space via geodesic currents , 1988 .
[123] D. Sullivan,et al. Currents, flows and diffeomorphisms , 1975 .
[124] David Fried. Growth rate of surface homeomorphisms and flow equivalence , 1985, Ergodic Theory and Dynamical Systems.
[125] J. Thiffeault,et al. On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus , 2009, 0905.1302.
[126] José Montesinos,et al. Classical tessellations and three-manifolds , 1987 .