Algorithms for Optimal Control of Stochastic Switching Systems

Optimal control problems of switching type with linear state dynamics are ubiquitous in applications of stochastic optimization. For high-dimensional problems of this type, solutions which utilize some convexity related properties are useful. For such problems, we present novel algorithmic solutions which require minimal assumptions while demonstrating remarkable computational efficiency. Furthermore, we devise procedures of the primal-dual kind to assess the distance to optimality of these approximate solutions.

[1]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[2]  John Schoenmakers,et al.  A pure martingale dual for multiple stopping , 2012, Finance Stochastics.

[3]  Denis Belomestny,et al.  Regression Methods for Stochastic Control Problems and Their Convergence Analysis , 2009, SIAM J. Control. Optim..

[4]  David Lamper,et al.  Monte Carlo valuation of American Options , 2004 .

[5]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[6]  U. Rieder,et al.  Markov Decision Processes with Applications to Finance , 2011 .

[7]  John N. Tsitsiklis,et al.  Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives , 1999, IEEE Trans. Autom. Control..

[8]  N. Meinshausen,et al.  MONTE CARLO METHODS FOR THE VALUATION OF MULTIPLE‐EXERCISE OPTIONS , 2004 .

[9]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[10]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[11]  Philip Protter,et al.  An analysis of the Longstaff-Schwartz algorithm for American option pricing , 2001 .

[12]  Dirk Ormoneit,et al.  Kernel-Based Reinforcement Learning , 2017, Encyclopedia of Machine Learning and Data Mining.

[13]  L. C. G. Rogers,et al.  Pathwise Stochastic Optimal Control , 2007, SIAM J. Control. Optim..

[14]  Daniel Egloff Monte Carlo algorithms for optimal stopping and statistical learning , 2004, math/0408276.

[15]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[16]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[17]  R. Carmona,et al.  OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS , 2008 .

[18]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[19]  Peter W. Glynn,et al.  Kernel-Based Reinforcement Learning in Average-Cost Problems: An Application to Optimal Portfolio Choice , 2000, NIPS.

[20]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[21]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[22]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[23]  Farshid Jamshidian,et al.  Numeraire-invariant option pricing & american, bermudan, and trigger stream rollover , 2004 .

[24]  Eugene A. Feinberg,et al.  Handbook of Markov Decision Processes , 2002 .

[25]  M. Kohler,et al.  A DYNAMIC LOOK-AHEAD MONTE CARLO ALGORITHM FOR PRICING AMERICAN OPTIONS , 2006 .

[26]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[27]  Lars Stentoft,et al.  Convergence of the Least Squares Monte Carlo Approach to American Option Valuation , 2004, Manag. Sci..

[28]  Juri Hinz,et al.  Optimal Stochastic Switching under Convexity Assumptions , 2014, SIAM J. Control. Optim..