Practical Evaluation of Fish Quality by Objective, Subjective, and Statistical Testing

[1]  D. Montēt,et al.  Determination of fish origin by using 16S rDNA fingerprinting of bacterial communities by PCR-DGGE : An application on Pangasius fish from Viet Nam , 2008 .

[2]  Peerasak Sanguansri,et al.  Nanoscale materials development - a food industry perspective , 2006 .

[3]  Tetsuo Aishima,et al.  Comparison of aroma characteristics of 16 fish species by sensory evaluation and gas chromatographic analysis , 2003, Journal of the Science of Food and Agriculture.

[4]  Wim Verbeke,et al.  Consumer Evaluation of Fish Quality as Basis for Fish Market Segmentation , 2007 .

[5]  R. Levin,et al.  Selection of Universal Primers for PCR Quantification of Total Bacteria Associated With Fish Fillets , 2006 .

[6]  Gamal ElMasry,et al.  High-speed assessment of fat and water content distribution in fish fillets using online imaging spectroscopy. , 2008, Journal of agricultural and food chemistry.

[7]  P. Carmona,et al.  Raman Analysis of White Spots Appearing in the Shell of Argentine Red Shrimp (Pleoticus muelleri) during Frozen Storage , 2002 .

[8]  Paul Takhistov,et al.  Nanotechnology: A New Frontier in Food Science , 2003 .

[9]  A. Morey Fish bacterial flora identification via rapid cellular fatty acid analysis , 2007 .

[10]  Zulfiqur Ali,et al.  Making Laboratory Measurements on a Chip , 2007 .

[11]  G. Giordano,et al.  A NEW PCR METHOD OF CHARACTERIZING SEAFISH FRESHNESS , 2002 .

[12]  C. Alasalvar,et al.  Practical Evaluation of Fish Quality , 2002 .

[13]  Ana M. Herrero,et al.  Raman spectroscopy a promising technique for quality assessment of meat and fish : A review , 2008 .

[14]  M. Sivertsvik Lessons from other commodities: fish and meat , 2007 .

[15]  Jörg Oehlenschläger,et al.  Measuring Electrical Properties , 2009 .

[16]  W. T. O'Hare,et al.  Analysis of Seafood Aroma/Odour by Electronic Nose Technology and Direct Analysis , 2002 .

[17]  B. Thomma,et al.  Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. , 2008, Food microbiology.

[18]  J. Pickova,et al.  Sensory, microbiological, physical and chemical properties of cuttlefish (Sepia officinalis) and broadtail shortfin squid (Illex coindetii) stored in ice , 2008 .

[19]  H. Jensen Changes in seafood consumer preference patterns and associated changes in risk exposure. , 2006, Marine pollution bulletin.

[20]  C. Alasalvar,et al.  Temperature modelling and relationships in fish transportation , 1997 .

[21]  T. Thomas-Danguin,et al.  Just noticeable differences in component concentrations modify the odor quality of a blending mixture. , 2008, Chemical senses.

[22]  E. Russek-Cohen,et al.  Effect of sampling method on the representative recovery of microorganisms from the surfaces of aquacultured finfish. , 2001, Journal of food protection.

[23]  Corrado Di Natale,et al.  Electronic Nose and Electronic Tongue , 2009 .

[24]  P. Panagiotaki,et al.  A marketing survey on Greek consumers' attitudes towards fish , 2004, Aquaculture International.

[25]  Romdhane Karoui,et al.  Mid-infrared spectroscopy as a new tool for the evaluation of fish freshness , 2007 .

[26]  Karsten Heia,et al.  VIS/NIR Spectroscopy , 2009 .

[27]  F. Toldrá,et al.  Freshness monitoring of sea bream (Sparus aurata) with a potentiometric sensor. , 2008, Food chemistry.

[28]  Andrew Ehrenberg,et al.  The development of a numerical scoring system for the sensory assessment of the spoilage of wet white fish stored in ice , 1953 .

[29]  R. Johnston,et al.  Assessing Consumer Preferences for Ecolabeled Seafood: The Influence of Species, Certifier, and Household Attributes , 1999 .

[30]  Ana M. Herrero,et al.  Raman Spectroscopy for Monitoring Protein Structure in Muscle Food Systems , 2008, Critical reviews in food science and nutrition.

[31]  Margrethe Esaiassen,et al.  Predicting sensory score of cod (Gadus morhua) from visible spectroscopy , 2005 .

[32]  Gudmundur Stefánsson,et al.  Flavor characterization of ripened cod roe by gas chromatography, sensory analysis, and electronic nose. , 2004, Journal of agricultural and food chemistry.

[33]  S. Garrett,et al.  Improved fish species identification by use of lab-on-a-chip technology , 2005 .

[34]  W. Verbeke,et al.  Perceived Importance of Sustainability and Ethics Related to Fish: A Consumer Behavior Perspective , 2007, Ambio.

[35]  T. Aishima,et al.  Comparing Sensory and Gas Chromatographic Profiles in Aromas of Boiled Squid, Prawn, and Scallop using Full Factorial Design , 2002 .

[36]  H. Korkeala,et al.  Characterisation of lactic acid bacteria from spoiled, vacuum-packaged, cold-smoked rainbow trout using ribotyping. , 1999, International journal of food microbiology.

[37]  Antonella Macagnano,et al.  Multisensor for fish quality determination , 2004 .

[38]  Grethe Hyldig,et al.  Sensory evaluation of seafood - General principles and Guidelines , 2009 .

[39]  M. Kontominas,et al.  Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions: microbiological, biochemical and sensory attributes. , 2008, Food microbiology.

[40]  Bo Jørgensen,et al.  Quality Index Method (QIM) scheme developed for farmed Atlantic salmon (Salmo salar) , 2003 .

[41]  José M. Barat,et al.  An electronic tongue for fish freshness analysis using a thick-film array of electrodes , 2008 .

[42]  A.A.M. Schelvis-Smit,et al.  Sensory evaluation of seafood: methods , 2009 .

[43]  Jochen Weiss,et al.  Functional Materials in Food Nanotechnology , 2006 .

[44]  Nigel P. Beard,et al.  Integrated on‐chip derivatization and electrophoresis for the rapid analysis of biogenic amines , 2004, Electrophoresis.

[45]  James L. Anderson,et al.  International shark fin markets and shark management: an integrated market preference-cohort analysis of the blacktip shark (Carcharhinus limbatus) , 2002 .

[46]  N. Erkan,et al.  Quality assessment of whole and gutted sardines (Sardina pilchardus) stored in ice , 2008 .

[47]  Andreas Rytz,et al.  Training is a critical step to obtain reliable product profiles in a real food industry context , 2004 .

[48]  J. Oehlenschläger,et al.  A new multivariate approach to the problem of fish quality estimation , 2004 .

[49]  Rashid Bashir,et al.  BIOMEMS AND NANOTECHNOLOGY-BASED APPROACHES FOR RAPID DETECTION OF BIOLOGICAL ENTITIES , 2007 .

[50]  Gerard Downey Non-invasive and non-destructive percutaneous analysis of farmed salmon flesh by near infra-red spectroscopy , 1996 .

[51]  S. Nordin,et al.  Perceptual Learning in Olfaction Professional Wine Tasters versus Controls , 1997, Physiology & Behavior.

[52]  D. Fung,et al.  RAPID METHODS FOR IDENTIFYING SEAFOOD MICROBIAL PATHOGENS AND TOXINS1 , 2007 .

[53]  Dermot Diamond,et al.  Development of a smart packaging for the monitoring of fish spoilage , 2007 .

[54]  Danilo Ercolini,et al.  PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. , 2004, Journal of microbiological methods.

[55]  Paw Dalgaard,et al.  Methods to evaluate fish freshness in research and industry , 1997 .

[56]  A. Al-Harbi,et al.  Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus×Oreochromis aureus) cultured in earthen ponds in Saudi Arabia , 2004 .

[57]  Mercedes Careche,et al.  Instrumental Texture Measurement , 2009 .

[58]  M. Kent,et al.  Time Domain Spectroscopy , 2009 .

[59]  Tracey Hollowood,et al.  Correlating instrumental measurements of texture and flavour release with human perception , 2005 .

[60]  Wim Verbeke,et al.  Consumer perception versus scientific evidence of farmed and wild fish: exploratory insights from Belgium , 2007, Aquaculture International.

[61]  B. Mazzolai,et al.  Application of Micro and Nanotechnologies to Food Safety and Quality Monitoring , 2007 .

[62]  J. Haugen,et al.  Volatile compounds suitable for rapid detection as quality indicators of cold smoked salmon (Salmo salar). , 2008, Food chemistry.

[63]  Wen-Tso Liu,et al.  Microfluidic device as a new platform for immunofluorescent detection of viruses. , 2005, Lab on a chip.

[64]  V. Vittoria,et al.  Potential perspectives of bio-nanocomposites for food packaging applications , 2007 .

[65]  F. Pazos,et al.  Fatty acid analysis as a chemotaxonomic tool for taxonomic and epidemiological characterization of four fish pathogenic Tenacibaculum species , 2008, Letters in applied microbiology.