Estimates of dimension reduction errors for stationary reaction–diffusion problems

We consider the stationary reaction–diffusion model in a bounded domain $ \Omega \in {\mathbb{R}^3} $, which size along one coordinate direction is essentially smaller than along the others. By an energy type argumentation, we deduce two simplified models (zero-, and first order models) defined in a domain of the dimension two. For these models we derive estimates of the difference between the solution of the original problem and approximate solutions obtained with the help of simplified models. The right-hand sides of the estimates contain only explicitly known functions and solutions of two-dimensional problems. Bibliography: 13 titles. Illustrations: 1 figure.

[1]  Christoph Schwab,et al.  On the posteriori estimation of the modeling error for the heat conduction in a plate and its use for adaptive hierarchical modeling , 1994 .

[2]  J. Tinsley Oden,et al.  Adaptive hpq-finite element methods of hierarchical models for plate- and shell-like structures , 1996 .

[3]  I. Babuska,et al.  On a dimensional reduction method. I. The optimal selection of basis functions , 1981 .

[4]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[5]  Ivo Babuška,et al.  On a dimensional reduction method. III. A posteriori error estimation and an adaptive approach , 1981 .

[6]  S. Sauter,et al.  Computable estimates of the modeling error related to Kirchhoff-Love plate model , 2010 .

[7]  Mark Ainsworth,et al.  A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains , 1998, Numerische Mathematik.

[8]  Philippe G. Ciarlet,et al.  Plates And Junctions In Elastic Multi-Structures , 1990 .

[9]  S. Repin Estimates for Errors in Two-Dimensional Models of Elasticity Theory , 2001 .

[10]  Sergey Repin,et al.  A posteriori error estimation for nonlinear variational problems by duality theory , 2000 .

[11]  W. C. Rheinboldt,et al.  The hypercircle in mathematical physics , 1958 .

[12]  Philippe G. Ciarlet,et al.  A Justi cation of a Nolinear Model in Plate Theory , 1979 .

[13]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[14]  Douglas N. Arnold,et al.  Derivation and Justification of Plate Models by Variational Methods , 2000 .

[15]  Sergey Repin,et al.  A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions , 2004 .

[16]  Stefan A. Sauter,et al.  A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.

[17]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[18]  S. Sauter,et al.  A Posteriori Estimation of Dimension Reduction Errors , 2004 .

[19]  Ivo Babuška,et al.  A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains , 1996 .

[20]  S. Ohnimus,et al.  Coupled model- and solution-adaptivity in the finite-element method , 1997 .

[21]  Philippe G. Ciarlet,et al.  Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis , 1991 .