Bayesian inference for psychology, part III: Parameter estimation in nonstandard models

We demonstrate the use of three popular Bayesian software packages that enable researchers to estimate parameters in a broad class of models that are commonly used in psychological research. We focus on WinBUGS, JAGS, and Stan, and show how they can be interfaced from R and MATLAB. We illustrate the use of the packages through two fully worked examples; the examples involve a simple univariate linear regression and fitting a multinomial processing tree model to data from a classic false-memory experiment. We conclude with a comparison of the strengths and weaknesses of the packages. Our example code, data, and this text are available via https://osf.io/ucmaz/.

[1]  William H. Batchelder,et al.  Separation of storage and retrieval factors in free recall of clusterable pairs. , 1980 .

[2]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[3]  Jeffrey N. Rouder,et al.  A hierarchical process-dissociation model. , 2008, Journal of experimental psychology. General.

[4]  M. Lee How cognitive modeling can benefit from hierarchical Bayesian models. , 2011 .

[5]  Jeffrey N. Rouder,et al.  A hierarchical model for estimating response time distributions , 2005, Psychonomic bulletin & review.

[6]  Ruud Wetzels,et al.  Bayesian inference using WBDev: A tutorial for social scientists , 2010, Behavior research methods.

[7]  E. Wagenmakers,et al.  Model Comparison and the Principle of Parsimony , 2015 .

[8]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[9]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[10]  Brandon M. Turner,et al.  A method for efficiently sampling from distributions with correlated dimensions. , 2013, Psychological methods.

[11]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[12]  Scott D. Brown,et al.  The simplest complete model of choice response time: Linear ballistic accumulation , 2008, Cognitive Psychology.

[13]  M. Lee,et al.  Hierarchical diffusion models for two-choice response times. , 2011, Psychological methods.

[14]  Willem A. Wagenaar,et al.  Misleading postevent information: Testing parameterized models of integration in memory , 1987 .

[15]  Tom Lodewyckx,et al.  A tutorial on Bayes factor estimation with the product space method , 2011 .

[16]  David M. Riefer,et al.  Multinomial Modeling and the Measurement of Cognitive Processes , 2001 .

[17]  Jun Lu,et al.  An introduction to Bayesian hierarchical models with an application in the theory of signal detection , 2005, Psychonomic bulletin & review.

[18]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[19]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[20]  Donald B. Rubin,et al.  Evaluating and Using Statistical Methods in the Social Sciences , 1999 .

[21]  Joachim Vandekerckhove,et al.  Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example) , 2013, Behavior Research Methods.

[22]  Scott D. Brown,et al.  Bayesian parametric estimation of stop-signal reaction time distributions. , 2013, Journal of experimental psychology. General.

[23]  J. Raaijmakers,et al.  How to quantify support for and against the null hypothesis: A flexible WinBUGS implementation of a default Bayesian t test , 2009, Psychonomic bulletin & review.

[24]  E. Wagenmakers,et al.  Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method , 2010, Cognitive Psychology.

[25]  Andrew Heathcote,et al.  The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties , 2015, Psychometrika.

[26]  E. Wagenmakers,et al.  Bayesian Estimation of Multinomial Processing Tree Models with Heterogeneity in Participants and Items , 2013, Psychometrika.

[27]  Han Lin Shang,et al.  The BUGS book: a practical introduction to Bayesian analysis , 2013 .

[28]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[29]  Casimir J. H. Ludwig,et al.  Bayesian and maximum likelihood estimation of hierarchical response time models , 2008, Psychonomic bulletin & review.

[30]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[31]  L. M. M.-T. Theory of Probability , 1929, Nature.

[32]  J. Townsend,et al.  The Oxford Handbook of Computational and Mathematical Psychology , 2015 .

[33]  David S. Leslie,et al.  A tutorial on bridge sampling , 2017, Journal of mathematical psychology.

[34]  E. Wagenmakers,et al.  Hierarchical Bayesian parameter estimation for cumulative prospect theory , 2011, Journal of Mathematical Psychology.

[35]  E. Wagenmakers,et al.  Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis , 2009, Psychonomic bulletin & review.