Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies

We show that the measured abundance of ultra-faint lensed galaxies at z ≈ 6 in the Hubble Frontier Fields (HFF) provides stringent constraints on the parameter space of (i) dark matter models based on keV sterile neutrinos; (ii) “fuzzy” wavelike dark matter models, based on Bose–Einstein condensates of ultra-light particles. For the case of sterile neutrinos, we consider two production mechanisms: resonant production through mixing with active neutrinos and the decay of scalar particles. For the former model, we derive constraints for the combination of sterile neutrino mass m ν and mixing parameter sin 2 ( 2 θ ) which provide the tightest lower bounds on the mixing angle (and hence on the lepton asymmetry) derived so far by methods independent of baryonic physics. For the latter we compute the allowed combinations of the scalar mass, its coupling to the Higgs field, and the Yukawa coupling of scalar to sterile neutrinos. We compare our results to independent existing astrophysical bounds on sterile neutrinos in the same mass range. For the case of “fuzzy” dark matter, we show that the observed number density ≈ 1 / Mpc 3 of high-redshift galaxies in the HFF sets a lower limit m ψ ≥ 8 · 10 − 22 eV (at the 3-σ confidence level) on the particle mass, a result that strongly disfavors wavelike bosonic dark matter as a viable model for structure formation. We discuss the impact on our results of uncertainties due to systematics in the selection of highly magnified, faint galaxies at high redshift.

[1]  D. Marsh,et al.  Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts , 2016, 1611.05892.

[2]  A. Merle,et al.  keV sterile neutrino dark matter from singlet scalar decays: the most general case , 2016, 1609.01289.

[3]  A. Grazian,et al.  A STRINGENT LIMIT ON THE WARM DARK MATTER PARTICLE MASSES FROM THE ABUNDANCE OF z = 6 GALAXIES IN THE HUBBLE FRONTIER FIELDS , 2016, 1606.02530.

[4]  S. Riemer-Sørensen Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre , 2016 .

[5]  D. Spergel,et al.  Ultra-light dark matter in ultra-faint dwarf galaxies , 2016, 1603.07321.

[6]  V. A. Bruce,et al.  The ASTRODEEP Frontier Fields catalogues - II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416 , 2016, 1603.02461.

[7]  J. Lesgourgues,et al.  A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.

[8]  I. P'erez-Fournon,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. III. MACS J0717.5+3745 , 2016, 1602.02775.

[9]  Aurel Schneider,et al.  Astrophysical constraints on resonantly produced sterile neutrino dark matter , 2016, 1601.07553.

[10]  A. Grazian,et al.  CONSTRAINING THE WARM DARK MATTER PARTICLE MASS THROUGH ULTRA-DEEP UV LUMINOSITY FUNCTIONS AT z = 2 , 2016, 1601.01820.

[11]  F. V. Massoli,et al.  Physics reach of the XENON1T dark matter experiment. , 2015, 1512.07501.

[12]  A. Merle,et al.  Dodelson-Widrow production of sterile neutrino Dark Matter with non-trivial initial abundance , 2015, 1512.05369.

[13]  B. Shakya Sterile Neutrino Dark Matter from Freeze-In , 2015, 1512.02751.

[14]  T. Jeltema,et al.  Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line , 2015, 1512.01239.

[15]  Epfl,et al.  Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter , 2015, 1511.04078.

[16]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[17]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[18]  Tzihong Chiueh,et al.  CONTRASTING GALAXY FORMATION FROM QUANTUM WAVE DARK MATTER, ψDM, WITH ΛCDM, USING PLANCK AND HUBBLE DATA , 2015, 1508.04621.

[19]  L. Danese,et al.  Cold or warm? Constraining dark matter with primeval galaxies and cosmic reionization after Planck , 2015, 1508.02147.

[20]  F. Cyr-Racine,et al.  Sterile neutrino dark matter: Weak interactions in the strong coupling epoch , 2015, 1507.06655.

[21]  M. Laine,et al.  Improved determination of sterile neutrino dark matter spectrum , 2015, Journal of High Energy Physics.

[22]  T. Harko,et al.  Gravitational, lensing and stability properties of Bose-Einstein condensate dark matter halos , 2015, 1505.00944.

[23]  S. Horiuchi,et al.  Improved limits on sterile neutrino dark matter using full-sky Fermi Gamma-ray Burst Monitor data , 2015, 1504.04027.

[24]  K. Mitsuda,et al.  A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background , 2015, 1504.02826.

[25]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[26]  D. Marsh,et al.  Axion dark matter, solitons and the cusp–core problem , 2015, 1502.03456.

[27]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[28]  A. Merle,et al.  keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features , 2015, 1502.01011.

[29]  Viktor T. Toth,et al.  Evolution and dynamical properties of Bose-Einstein condensate dark matter stars , 2014, Physical Review D.

[30]  K. Mitsuda,et al.  An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku , 2014, 1412.1869.

[31]  A. Schneider Structure formation with suppressed small-scale perturbations , 2014, 1412.2133.

[32]  Y. Rasera,et al.  Small scale clustering of late forming dark matter , 2014, 1412.1103.

[33]  I. P'erez-Fournon,et al.  Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1−2403 , 2014, 1412.1089.

[34]  T. Matos,et al.  Dwarf galaxies in multistate scalar field dark matter halos , 2014, 1410.4163.

[35]  M. Oguri,et al.  THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.

[36]  A. Merle,et al.  Production of Sterile Neutrino Dark Matter and the 3.5 keV line , 2014, 1409.6311.

[37]  M. A. Schmidt,et al.  A fresh look at keV sterile neutrino dark matter from frozen-in scalars , 2014, 1409.4330.

[38]  J. Silk,et al.  Galaxy UV-luminosity function and reionization constraints on axion dark matter , 2014, 1409.3544.

[39]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[40]  M. Oguri,et al.  HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.

[41]  A. Pontzen,et al.  Faint dwarfs as a test of DM models: WDM versus CDM , 2014, 1407.0022.

[42]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[43]  A. Peter,et al.  Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes , 2014, 1406.0527.

[44]  C. Simpson,et al.  Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter , 2014, 1405.5216.

[45]  A. Klypin,et al.  Abundance of field galaxies , 2014, 1405.4523.

[46]  M. Buckley,et al.  Scattering, damping, and acoustic oscillations: Simulating the structure of dark matter halos with relativistic force carriers , 2014, 1405.2075.

[47]  Xiaoyong Chu,et al.  Dark radiation alleviates problems with dark matter halos. , 2014, Physical review letters.

[48]  C. Brook,et al.  A mass-dependent density profile for dark matter haloes including the influence of galaxy formation , 2014, 1404.5959.

[49]  K. Abazajian Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites. , 2014, Physical review letters.

[50]  A. Boyarsky,et al.  Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.

[51]  M. Markevitch,et al.  DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.

[52]  J. Bullock,et al.  The high-z universe confronts warm dark matter: Galaxy counts, reionization and the nature of dark matter , 2014, 1401.3769.

[53]  M. Kaplinghat,et al.  Sterile neutrino dark matter bounds from galaxies of the Local Group , 2013, 1311.0282.

[54]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[55]  S. Cole,et al.  Constraining the warm dark matter particle mass with Milky Way satellites , 2013, 1310.7739.

[56]  M. Klasen,et al.  Warm and cold fermionic dark matter via freeze-in , 2013, 1309.2777.

[57]  P. Salucci,et al.  Observational rotation curves and density profiles versus the Thomas–Fermi galaxy structure theory , 2013, 1309.2290.

[58]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[59]  M. Casolino,et al.  Cosmic-ray positron energy spectrum measured by PAMELA. , 2013, Physical review letters.

[60]  J. Silk,et al.  A model for halo formation with axion mixed dark matter , 2013, 1307.1705.

[61]  A. Merle,et al.  New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars , 2013, 1306.3996.

[62]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[63]  Z. Haiman,et al.  Focusing on warm dark matter with lensed high-redshift galaxies , 2013, 1306.0009.

[64]  Zurich,et al.  The warm dark matter halo mass function below the cut-off scale , 2013, 1304.2406.

[65]  R. Smith,et al.  Halo mass function and the free streaming scale , 2013, 1303.0839.

[66]  A. Merle keV Neutrino Model Building , 2013, 1302.2625.

[67]  P. Catastini,et al.  Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector , 2012, Journal of High Energy Physics.

[68]  Kris Sigurdson,et al.  Cosmology of atomic dark matter , 2012, 1209.5752.

[69]  Durham,et al.  Dark matter halo merger histories beyond cold dark matter – I. Methods and application to warm dark matter , 2012, 1209.3018.

[70]  M. Shaposhnikov,et al.  Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos , 2012, 1208.4607.

[71]  Astronomy,et al.  Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.

[72]  Tucson,et al.  The size-luminosity relation at z=7 in CANDELS and its implication on reionization , 2012, 1208.0506.

[73]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[74]  E. Grebel,et al.  DARK MATTER SUBHALOS IN THE URSA MINOR DWARF GALAXY , 2012, 1207.5681.

[75]  B. Moore,et al.  Cores in warm dark matter haloes: a Catch 22 problem , 2012, 1202.1282.

[76]  R. Smith,et al.  Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.

[77]  Casey R. Watson,et al.  Constraining sterile neutrino warm dark matter with Chandra observations of the Andromeda galaxy , 2011, 1111.4217.

[78]  A. Boyarsky,et al.  The haloes of bright satellite galaxies in a warm dark matter universe , 2011, 1104.2929.

[79]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[80]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics , 2011, 1104.2935.

[81]  A. Melchiorri,et al.  Cosmological and astrophysical neutrino mass measurements , 2011, 1103.5083.

[82]  Pierre-Henri Chavanis,et al.  BEC dark matter, Zeldovich approximation and generalized Burgers equation , 2011, 1103.3219.

[83]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[84]  A. Fontana,et al.  A critical analysis of the UV Luminosity Function at redshift~7 from deep WFC3 data , 2010, 1011.6569.

[85]  J. Cuby,et al.  The bright end of the z ~ 7 UV luminosity function from a wide and deep HAWK-I survey , 2010, 1007.5396.

[86]  M. Shaposhnikov,et al.  Baryon Asymmetry of the Universe in the NuMSM , 2010, 1006.0133.

[87]  E. Polisensky,et al.  Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites , 2010, 1004.1459.

[88]  Ben Moore,et al.  The structure and evolution of cold dark matter halos , 2009, 0906.4340.

[89]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[90]  E. W. Mielke,et al.  Axion condensate as a model for dark matter halos , 2009 .

[91]  A. Boyarsky,et al.  A lower bound on the mass of dark matter particles , 2008, 0808.3902.

[92]  T. Chiueh,et al.  HIGH-RESOLUTION SIMULATION ON STRUCTURE FORMATION WITH EXTREMELY LIGHT BOSONIC DARK MATTER , 2008, 0806.0232.

[93]  M. Shaposhnikov The nuMSM, leptonic asymmetries, and properties of singlet fermions , 2008, 0804.4542.

[94]  M. Shaposhnikov,et al.  Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry , 2008, 0804.4543.

[95]  G. Fuller,et al.  Lepton-number-driven sterile neutrino production in the early universe , 2008, 0802.3377.

[96]  K. Petraki,et al.  Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector , 2007, 0711.4646.

[97]  A. Kusenko Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.

[98]  J. Lesgourgues,et al.  Can sterile neutrinos be ruled out as warm dark matter candidates? , 2006, Physical review letters.

[99]  F. Steffen Gravitino dark matter and cosmological constraints , 2006, hep-ph/0605306.

[100]  M. Shaposhnikov,et al.  The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.

[101]  H. Trac,et al.  Can sterile neutrinos be the dark matter? , 2006, Physical review letters.

[102]  T. Asaka,et al.  The νMSM, dark matter and baryon asymmetry of the universe , 2005, hep-ph/0505013.

[103]  G. Fuller,et al.  Sterile Neutrino Hot, Warm, and Cold Dark Matter , 2001, astro-ph/0101524.

[104]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[105]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[106]  S. Colombi,et al.  Large-scale structure tests of warm dark matter , 1995, astro-ph/9505029.

[107]  Widrow,et al.  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[108]  J. Maalampi,et al.  Resonant neutrino transitions and nucleosynthesis , 1990 .

[109]  Jihn E. Kim Light Pseudoscalars, Particle Physics and Cosmology , 1987 .

[110]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[111]  Boris A. Malomed,et al.  Gravitational instability of scalar fields and formation of primordial black holes , 1985 .

[112]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[113]  P. Peebles Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations , 1982 .