Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies
暂无分享,去创建一个
A. Grazian | N. Menci | A. Merle | M. Totzauer | M. Castellano | A. Schneider | N. Sanchez
[1] D. Marsh,et al. Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts , 2016, 1611.05892.
[2] A. Merle,et al. keV sterile neutrino dark matter from singlet scalar decays: the most general case , 2016, 1609.01289.
[3] A. Grazian,et al. A STRINGENT LIMIT ON THE WARM DARK MATTER PARTICLE MASSES FROM THE ABUNDANCE OF z = 6 GALAXIES IN THE HUBBLE FRONTIER FIELDS , 2016, 1606.02530.
[4] S. Riemer-Sørensen. Constraints on the presence of a 3.5 keV dark matter emission line from Chandra observations of the Galactic centre , 2016 .
[5] D. Spergel,et al. Ultra-light dark matter in ultra-faint dwarf galaxies , 2016, 1603.07321.
[6] V. A. Bruce,et al. The ASTRODEEP Frontier Fields catalogues - II. Photometric redshifts and rest frame properties in Abell-2744 and MACS-J0416 , 2016, 1603.02461.
[7] J. Lesgourgues,et al. A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.
[8] I. P'erez-Fournon,et al. YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. III. MACS J0717.5+3745 , 2016, 1602.02775.
[9] Aurel Schneider,et al. Astrophysical constraints on resonantly produced sterile neutrino dark matter , 2016, 1601.07553.
[10] A. Grazian,et al. CONSTRAINING THE WARM DARK MATTER PARTICLE MASS THROUGH ULTRA-DEEP UV LUMINOSITY FUNCTIONS AT z = 2 , 2016, 1601.01820.
[11] F. V. Massoli,et al. Physics reach of the XENON1T dark matter experiment. , 2015, 1512.07501.
[12] A. Merle,et al. Dodelson-Widrow production of sterile neutrino Dark Matter with non-trivial initial abundance , 2015, 1512.05369.
[13] B. Shakya. Sterile Neutrino Dark Matter from Freeze-In , 2015, 1512.02751.
[14] T. Jeltema,et al. Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line , 2015, 1512.01239.
[15] Epfl,et al. Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter , 2015, 1511.04078.
[16] D. Marsh,et al. Axion Cosmology , 2015, 1510.07633.
[17] S. Lamoreaux,et al. Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.
[18] Tzihong Chiueh,et al. CONTRASTING GALAXY FORMATION FROM QUANTUM WAVE DARK MATTER, ψDM, WITH ΛCDM, USING PLANCK AND HUBBLE DATA , 2015, 1508.04621.
[19] L. Danese,et al. Cold or warm? Constraining dark matter with primeval galaxies and cosmic reionization after Planck , 2015, 1508.02147.
[20] F. Cyr-Racine,et al. Sterile neutrino dark matter: Weak interactions in the strong coupling epoch , 2015, 1507.06655.
[21] M. Laine,et al. Improved determination of sterile neutrino dark matter spectrum , 2015, Journal of High Energy Physics.
[22] T. Harko,et al. Gravitational, lensing and stability properties of Bose-Einstein condensate dark matter halos , 2015, 1505.00944.
[23] S. Horiuchi,et al. Improved limits on sterile neutrino dark matter using full-sky Fermi Gamma-ray Burst Monitor data , 2015, 1504.04027.
[24] K. Mitsuda,et al. A Search for a keV Signature of Radiatively Decaying Dark Matter with Suzaku XIS Observations of the X-ray Diffuse Background , 2015, 1504.02826.
[25] J. Chiang,et al. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.
[26] D. Marsh,et al. Axion dark matter, solitons and the cusp–core problem , 2015, 1502.03456.
[27] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[28] A. Merle,et al. keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features , 2015, 1502.01011.
[29] Viktor T. Toth,et al. Evolution and dynamical properties of Bose-Einstein condensate dark matter stars , 2014, Physical Review D.
[30] K. Mitsuda,et al. An X-ray Spectroscopic Search for Dark Matter in the Perseus Cluster with Suzaku , 2014, 1412.1869.
[31] A. Schneider. Structure formation with suppressed small-scale perturbations , 2014, 1412.2133.
[32] Y. Rasera,et al. Small scale clustering of late forming dark matter , 2014, 1412.1103.
[33] I. P'erez-Fournon,et al. Frontier Fields: Combining HST, VLT, and Spitzer data to explore the z ~ 8 Universe behind the lensing cluster MACSJ0416.1−2403 , 2014, 1412.1089.
[34] T. Matos,et al. Dwarf galaxies in multistate scalar field dark matter halos , 2014, 1410.4163.
[35] M. Oguri,et al. THE SIZES OF z ∼ 6–8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS ABELL 2744 DATA , 2014, 1410.1535.
[36] A. Merle,et al. Production of Sterile Neutrino Dark Matter and the 3.5 keV line , 2014, 1409.6311.
[37] M. A. Schmidt,et al. A fresh look at keV sterile neutrino dark matter from frozen-in scalars , 2014, 1409.4330.
[38] J. Silk,et al. Galaxy UV-luminosity function and reionization constraints on axion dark matter , 2014, 1409.3544.
[39] J. Kneib,et al. NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.
[40] M. Oguri,et al. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.
[41] A. Pontzen,et al. Faint dwarfs as a test of DM models: WDM versus CDM , 2014, 1407.0022.
[42] T. Broadhurst,et al. Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.
[43] A. Peter,et al. Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes , 2014, 1406.0527.
[44] C. Simpson,et al. Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter , 2014, 1405.5216.
[45] A. Klypin,et al. Abundance of field galaxies , 2014, 1405.4523.
[46] M. Buckley,et al. Scattering, damping, and acoustic oscillations: Simulating the structure of dark matter halos with relativistic force carriers , 2014, 1405.2075.
[47] Xiaoyong Chu,et al. Dark radiation alleviates problems with dark matter halos. , 2014, Physical review letters.
[48] C. Brook,et al. A mass-dependent density profile for dark matter haloes including the influence of galaxy formation , 2014, 1404.5959.
[49] K. Abazajian. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites. , 2014, Physical review letters.
[50] A. Boyarsky,et al. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.
[51] M. Markevitch,et al. DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.
[52] J. Bullock,et al. The high-z universe confronts warm dark matter: Galaxy counts, reionization and the nature of dark matter , 2014, 1401.3769.
[53] M. Kaplinghat,et al. Sterile neutrino dark matter bounds from galaxies of the Local Group , 2013, 1311.0282.
[54] R. Webb,et al. First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.
[55] S. Cole,et al. Constraining the warm dark matter particle mass with Milky Way satellites , 2013, 1310.7739.
[56] M. Klasen,et al. Warm and cold fermionic dark matter via freeze-in , 2013, 1309.2777.
[57] P. Salucci,et al. Observational rotation curves and density profiles versus the Thomas–Fermi galaxy structure theory , 2013, 1309.2290.
[58] A. Fontana,et al. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.
[59] M. Casolino,et al. Cosmic-ray positron energy spectrum measured by PAMELA. , 2013, Physical review letters.
[60] J. Silk,et al. A model for halo formation with axion mixed dark matter , 2013, 1307.1705.
[61] A. Merle,et al. New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars , 2013, 1306.3996.
[62] M. Viel,et al. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.
[63] Z. Haiman,et al. Focusing on warm dark matter with lensed high-redshift galaxies , 2013, 1306.0009.
[64] Zurich,et al. The warm dark matter halo mass function below the cut-off scale , 2013, 1304.2406.
[65] R. Smith,et al. Halo mass function and the free streaming scale , 2013, 1303.0839.
[66] A. Merle. keV Neutrino Model Building , 2013, 1302.2625.
[67] P. Catastini,et al. Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector , 2012, Journal of High Energy Physics.
[68] Kris Sigurdson,et al. Cosmology of atomic dark matter , 2012, 1209.5752.
[69] Durham,et al. Dark matter halo merger histories beyond cold dark matter – I. Methods and application to warm dark matter , 2012, 1209.3018.
[70] M. Shaposhnikov,et al. Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos , 2012, 1208.4607.
[71] Astronomy,et al. Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure , 2012, 1208.3025.
[72] Tucson,et al. The size-luminosity relation at z=7 in CANDELS and its implication on reionization , 2012, 1208.0506.
[73] E Aprile,et al. Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.
[74] E. Grebel,et al. DARK MATTER SUBHALOS IN THE URSA MINOR DWARF GALAXY , 2012, 1207.5681.
[75] B. Moore,et al. Cores in warm dark matter haloes: a Catch 22 problem , 2012, 1202.1282.
[76] R. Smith,et al. Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.
[77] Casey R. Watson,et al. Constraining sterile neutrino warm dark matter with Chandra observations of the Andromeda galaxy , 2011, 1111.4217.
[78] A. Boyarsky,et al. The haloes of bright satellite galaxies in a warm dark matter universe , 2011, 1104.2929.
[79] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[80] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics , 2011, 1104.2935.
[81] A. Melchiorri,et al. Cosmological and astrophysical neutrino mass measurements , 2011, 1103.5083.
[82] Pierre-Henri Chavanis,et al. BEC dark matter, Zeldovich approximation and generalized Burgers equation , 2011, 1103.3219.
[83] M. Boylan-Kolchin,et al. Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.
[84] A. Fontana,et al. A critical analysis of the UV Luminosity Function at redshift~7 from deep WFC3 data , 2010, 1011.6569.
[85] J. Cuby,et al. The bright end of the z ~ 7 UV luminosity function from a wide and deep HAWK-I survey , 2010, 1007.5396.
[86] M. Shaposhnikov,et al. Baryon Asymmetry of the Universe in the NuMSM , 2010, 1006.0133.
[87] E. Polisensky,et al. Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites , 2010, 1004.1459.
[88] Ben Moore,et al. The structure and evolution of cold dark matter halos , 2009, 0906.4340.
[89] N. Kaloper,et al. String Axiverse , 2009, 0905.4720.
[90] E. W. Mielke,et al. Axion condensate as a model for dark matter halos , 2009 .
[91] A. Boyarsky,et al. A lower bound on the mass of dark matter particles , 2008, 0808.3902.
[92] T. Chiueh,et al. HIGH-RESOLUTION SIMULATION ON STRUCTURE FORMATION WITH EXTREMELY LIGHT BOSONIC DARK MATTER , 2008, 0806.0232.
[93] M. Shaposhnikov. The nuMSM, leptonic asymmetries, and properties of singlet fermions , 2008, 0804.4542.
[94] M. Shaposhnikov,et al. Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry , 2008, 0804.4543.
[95] G. Fuller,et al. Lepton-number-driven sterile neutrino production in the early universe , 2008, 0802.3377.
[96] K. Petraki,et al. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector , 2007, 0711.4646.
[97] A. Kusenko. Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.
[98] J. Lesgourgues,et al. Can sterile neutrinos be ruled out as warm dark matter candidates? , 2006, Physical review letters.
[99] F. Steffen. Gravitino dark matter and cosmological constraints , 2006, hep-ph/0605306.
[100] M. Shaposhnikov,et al. The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.
[101] H. Trac,et al. Can sterile neutrinos be the dark matter? , 2006, Physical review letters.
[102] T. Asaka,et al. The νMSM, dark matter and baryon asymmetry of the universe , 2005, hep-ph/0505013.
[103] G. Fuller,et al. Sterile Neutrino Hot, Warm, and Cold Dark Matter , 2001, astro-ph/0101524.
[104] R. Barkana,et al. Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.
[105] G. Fuller,et al. New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.
[106] S. Colombi,et al. Large-scale structure tests of warm dark matter , 1995, astro-ph/9505029.
[107] Widrow,et al. Sterile neutrinos as dark matter. , 1993, Physical review letters.
[108] J. Maalampi,et al. Resonant neutrino transitions and nucleosynthesis , 1990 .
[109] Jihn E. Kim. Light Pseudoscalars, Particle Physics and Cosmology , 1987 .
[110] A. Szalay,et al. The statistics of peaks of Gaussian random fields , 1986 .
[111] Boris A. Malomed,et al. Gravitational instability of scalar fields and formation of primordial black holes , 1985 .
[112] Joel R. Primack,et al. Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.
[113] P. Peebles. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations , 1982 .