Compact and low-loss bent hollow waveguides with distributed Bragg reflector.

In this study, a hollow bent waveguide with distributed Bragg reflectors (DBR) in silicon substrate was presented theoretically and experimentally. We used the two-dimensional finite-difference time-domain method to simulate bending transmission efficiencies for arc- and cut-type 90 degrees -bent waveguides. The air core was embedded by Si(3)N(4)/SiO(2) multilayer. The multilayer stacks were deposited by using plasma-enhanced chemical vapor deposition on the top and bottom of air core. The lowest 90 degree bending loss is around 3.9dB for the arc-type bending waveguides and 0.8dB for cut-type bending waveguides, respectively. This waveguide demonstrates a possibility for higher density of integration in planar light wave circuits.

[1]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[2]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[3]  Chii-Chang Chen,et al.  Semiconductor hollow optical waveguides formed by omni-directional reflectors. , 2004, Optics express.

[4]  Yu Wang Wavelength selection with coupled surface plasmon waves , 2003 .

[5]  R Orobtchouk,et al.  Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. , 2003, Optics letters.

[6]  Shanhui Fan,et al.  Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides , 2005 .

[7]  Jyh-Wen Sheen,et al.  Mode distinction and radiation-efficiency analysis of planar leaky-wave line source , 1997 .

[8]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[9]  Ming C. Wu,et al.  High-power high-speed photodetectors-design, analysis, and experimental demonstration , 1997 .

[10]  L. Kimerling,et al.  Sharp Bending of On-Chip Silicon Bragg Cladding Waveguide With Light Guiding in Low Index Core Materials , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Chii-Chang Chen,et al.  Fabricating a hollow optical waveguide for optical communication applications , 2006 .

[12]  Pierre Berini,et al.  Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. , 2005, Optics express.

[13]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[14]  Ian J. Hodgkinson,et al.  Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides , 1984 .

[15]  Steven G. Johnson,et al.  Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide , 2004 .

[16]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[17]  S. Fan,et al.  Omnidirectional resonance in a metal-dielectric-metal geometry , 2004 .

[18]  L. E. Regalado,et al.  Electromagnetic modes in metal-insulator-metal structures , 2001 .

[19]  E. Economou Surface Plasmons in Thin Films , 1969 .

[20]  Mark L. Brongersma,et al.  Omnidirectional light emission via surface plasmon polaritons , 2007 .

[21]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[22]  Harry A. Atwater,et al.  Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model , 2005 .

[23]  Steven G. Johnson,et al.  High-density integrated optics , 1999 .

[24]  Y.L. Wang,et al.  Integrated waveguide turning mirror in silicon-on-insulator , 2002, IEEE Photonics Technology Letters.

[25]  Yoshiaki Nakano,et al.  Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates , 2004 .

[26]  Vincent Laude,et al.  Negative group velocities in metal-film optical waveguides , 1997 .

[27]  P. Sarro,et al.  Microfluidic sensor based on integrated optical hollow waveguides. , 2004, Optics letters.

[28]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  H. Miyazaki,et al.  Metal-insulator-metal plasmon nanocavities: Analysis of optical properties , 2007 .

[30]  R. Osgood,et al.  A study of high-index-contrast 90 degree waveguide bend structures. , 2001, Optics express.