Lesions of the locus coeruleus system aggravate ischemic damage in the rat brain

[1]  T. Wieloch,et al.  Ischemic Brain Damage in Rats following Cardiac Arrest Using a Long-Term Recovery Model , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  T. Wieloch,et al.  Cyclic AMP Concentrations in Rat Neocortex and Hippocampus During and Following Incomplete Ischemia: Effects of Central Noradrenergic Neurons, Prostaglandins, and Adenosine , 1985, Journal of neurochemistry.

[3]  F. Gage,et al.  Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path. , 1985, Neurological research.

[4]  T. Wieloch Neurochemical correlates to selective neuronal vulnerability. , 1985, Progress in brain research.

[5]  B. Meldrum,et al.  Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. , 1984, Science.

[6]  Y. Olsson,et al.  Hypoglycemic Brain Injury in the Rat: Correlation of Density of Brain Damage with the EEG Isoelectric Time: A Quantitative Study , 1984, Diabetes.

[7]  O. Lindvall,et al.  Delayed Postischemic Hypoperfusion: Evidence against Involvement of the Noradrenergic Locus Ceruleus System , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  S. Rothman Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  T. Albertson,et al.  Neurotransmitter and neuromodulator function in the kindled seizure and state , 1982, Progress in Neurobiology.

[10]  D. Mcintyre,et al.  A new model of partial status epilepticus based on kindling , 1982, Brain Research.

[11]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.

[12]  R. Busto,et al.  Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  A. Björklund,et al.  Functional Activity of Substantia Nigra Grafts Reinnervating the Striatum: Neurotransmitter Metabolism and [14C]2‐Deoxy‐d‐glucose Autoradiography , 1982, Journal of neurochemistry.

[14]  R. S. Sloviter,et al.  Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats , 1981, Neuroscience Letters.

[15]  O. Lindvall,et al.  Cerebral blood flow and oxygen consumption in the rat brain after lesions of the noradrenergic locus coeruleus system , 1981, Brain Research.

[16]  J. LaManna,et al.  Norepinephrine depletion alters cerebral oxidative metabolism in the ‘active’ state , 1981, Brain Research.

[17]  R. Moore,et al.  Noradrenergic innervation of the adult rat hippocampal formation , 1980, The Journal of comparative neurology.

[18]  A. Carlsson,et al.  Influence of transient ischemia on monoamine metabolism in the rat brain during nitrous oxide and phenobarbitone anaesthesia , 1978, Brain Research.

[19]  A. Björklund,et al.  Organization of Catecholamine Neurons in the Rat Central Nervous System , 1978 .

[20]  D. Amaral,et al.  The locus coeruleus: neurobiology of a central noradrenergic nucleus , 1977, Progress in Neurobiology.

[21]  F. Bloom,et al.  The action of norepinephrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake rat , 1976, Brain Research.

[22]  B. K. Hartman,et al.  Central noradrenergic regulation of cerebral blood flow and vascular permeability. , 1975, Proceedings of the National Academy of Sciences of the United States of America.