Rank aggregation via nuclear norm minimization

The process of rank aggregation is intimately intertwined with the structure of skew symmetric matrices. We apply recent advances in the theory and algorithms of matrix completion to skew-symmetric matrices. This combination of ideas produces a new method for ranking a set of items. The essence of our idea is that a rank aggregation describes a partially filled skew-symmetric matrix. We extend an algorithm for matrix completion to handle skew-symmetric data and use that to extract ranks for each item. Our algorithm applies to both pairwise comparison and rating data. Because it is based on matrix completion, it is robust to both noise and incomplete data. We show a formal recovery result for the noiseless case and present a detailed study of the algorithm on synthetic data and Netflix ratings.

[1]  F. Murnaghan,et al.  A Canonical Form for Real Matrices under Orthogonal Transformations. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Kendall,et al.  ON THE METHOD OF PAIRED COMPARISONS , 1940 .

[3]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[4]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[5]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[6]  H. A. David,et al.  The method of paired comparisons , 1966 .

[7]  D. A. Quadling,et al.  Essai sur l'application de l'analyse a la probabilite des decisions , 1972 .

[8]  T. Saaty Rank According to Perron: A New Insight , 1987 .

[9]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Linton C. Freeman,et al.  Uncovering Organizational Hierarchies , 1997, Comput. Math. Organ. Theory.

[12]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[13]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[14]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of noise , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  Rong Jin,et al.  Ordering patterns by combining opinions from multiple sources , 2004, KDD.

[16]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[17]  A. Starnes,et al.  Statistical Models Applied to the Rating of Sports Teams , 2005 .

[18]  Noga Alon,et al.  Ranking Tournaments , 2006, SIAM J. Discret. Math..

[19]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[20]  Paul Van Dooren,et al.  Iterative Filtering for a Dynamical Reputation System , 2007, ArXiv.

[21]  Nir Ailon,et al.  Aggregating inconsistent information: Ranking and clustering , 2008 .

[22]  Daniel E. Ho,et al.  Improving the Presentation and Interpretation of Online Ratings Data with Model-Based Figures , 2008 .

[23]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[24]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[25]  R. Tibshirani,et al.  Regularization methods for learning incomplete matrices , 2009, 0906.2034.

[26]  Sewoong Oh,et al.  A Gradient Descent Algorithm on the Grassman Manifold for Matrix Completion , 2009, ArXiv.

[27]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[28]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[29]  Olgica Milenkovic,et al.  SET: An algorithm for consistent matrix completion , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[31]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[32]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[33]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[34]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[35]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[36]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[37]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[38]  C. D. Meyer,et al.  Who's #1?: The Science of Rating and Ranking , 2012 .

[39]  Guangdong Feng,et al.  A Tensor Based Method for Missing Traffic Data Completion , 2013 .