Spatiotemporal random fields associated with stochastic fractional Helmholtz and heat equations

In this paper, a class of spatiotemporal random field models defined as mean-square solutions of fractional versions of the stochastic heat equation are considered. Different sampling schemes in space and time are introduced to solve the problem of estimation of fully parameterized spatiotemporal random fields.

[1]  Vo Anh,et al.  Scaling laws for fractional diffusion-wave equations with singular data , 2000 .

[2]  R. Dobrushin Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .

[3]  José M. Angulo,et al.  Fractional Generalized Random Fields on Bounded Domains , 2003 .

[4]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[5]  A. Balakrishnan,et al.  Spectral theory of random fields , 1983 .

[6]  V. Anh,et al.  Fractional diffusion and fractional heat equation , 2000, Advances in Applied Probability.

[7]  C. Heyde On a class of random field models which allows long range dependence , 1990 .

[8]  Richard H. Jones,et al.  Models for Continuous Stationary Space-Time Processes , 1997 .

[9]  C. Heyde Quasi-likelihood and its application : a general approach to optimal parameter estimation , 1998 .

[10]  José M. Angulo,et al.  Estimation and filtering of fractional generalised random fields , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[11]  Exact parabolic asymptotics for singular n-D Burgers' random fields : Gaussian approximation , 1998 .

[12]  José M. Angulo,et al.  Possible long-range dependence in fractional random fields , 1999 .

[13]  W. A. Woyczyński Burgers-KPZ Turbulence , 1998 .

[14]  O. E. Barndorff-Nielsen,et al.  Spectral Properties of Uperpositions of Ornstein-Uhlenbeck Type Processes , 2005 .

[15]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[16]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[17]  V. Anh,et al.  Continuous‐Time Stochastic Processes with Cyclical Long‐Range Dependence , 2004 .

[18]  H. Triebel Fractals and spectra , 1997 .

[19]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[20]  José M. Angulo,et al.  Fractional random fields on domains with fractal boundary , 2004 .

[21]  Gaussian Limiting Behavior of the Rescaled Solution to the Linear Korteweg–de Vries Equation with Random Initial Conditions , 2000 .

[22]  Chunsheng Ma LONG-MEMORY CONTINUOUS-TIME CORRELATION MODELS , 2003 .

[23]  José M. Angulo,et al.  Stochastic fractional-order differential models with fractal boundary conditions , 2001 .

[24]  Alexander G. Ramm,et al.  Random fields estimation theory , 1990 .

[25]  R. Adler The Geometry of Random Fields , 2009 .

[26]  M. Kelbert,et al.  Fractional random fields associated with stochastic fractional heat equations , 2005, Advances in Applied Probability.

[27]  Michael L. Stein,et al.  Fixed-Domain Asymptotics for Spatial Periodograms , 1995 .

[28]  N. Leonenko,et al.  Parameter identification for singular random fields arising in Burgers’ turbulence , 1999 .

[29]  N. Leonenko,et al.  Quasi-likelihood-based higher-order spectral estimation of random fields with possible long-range dependence , 2004, Journal of Applied Probability.

[30]  N. Leonenko,et al.  On a class of minimum contrast estimators for fractional stochastic processes and fields , 2004 .

[31]  N. Leonenko,et al.  Non-Gaussian scenarios for the heat equation with singular initial conditions , 1999 .

[32]  Nikolai N. Leonenko,et al.  Statistical Analysis of Random Fields , 1989 .

[33]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[34]  George Christakos,et al.  On certain classes of spatiotemporal random fields with applications to space-time data processing , 1991, IEEE Trans. Syst. Man Cybern..

[35]  N. Leonenko,et al.  Limit Theorems for Random Fields with Singular Spectrum , 1999 .

[36]  Timothy G. Gregoire,et al.  Modelling Longitudinal and Spatially Correlated Data , 1997 .

[37]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[38]  C. Heyde,et al.  Dynamic models of long-memory processes driven by Lévy noise , 2002, Journal of Applied Probability.

[39]  Vo Anh,et al.  Renormalization and homogenization of fractional diffusion equations with random data , 2002 .