Interactive parameter estimation for output error moving average systems

In this paper we study parameter estimation problems for the output error moving average systems. In order to reduce calculation loads of the existing identification methods, an interactive stochastic gradient (ISG) algorithm is presented to estimate the parameters of the system model and the noise model, respectively, based on the interactive estimation theory. Since the ISG algorithm possesses a slow convergence rate and poor estimation accuracy, interactive gradient-based and interactive least-squares-based iterative algorithms are derived to enhance the parameter estimation performances of the ISG algorithm. The simulation results illustrate the effectiveness of the proposed algorithms.

[1]  Huazhen Fang,et al.  Identification of Hammerstein Output-Error Systems with Two-Segment Nonlinearities: Algorithm and Applications 1 , 2010, Control. Intell. Syst..

[2]  Feng Ding,et al.  Several multi-innovation identification methods , 2010, Digit. Signal Process..

[3]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[4]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[5]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[6]  Huizhong Yang,et al.  Modelling and identification for non-uniformly periodically sampled-data systems , 2010 .

[7]  Fredrik Gustafsson,et al.  Identification with stochastic sampling time jitter , 2008, Autom..

[8]  Feng Ding,et al.  Parameter Identification and Intersample Output Estimation for Dual-Rate Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[9]  Feng Ding,et al.  Multi-innovation stochastic gradient algorithms for multi-input multi-output systems , 2009, Digit. Signal Process..

[10]  Tongwen Chen,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Transactions on Automatic Control.

[11]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[12]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[13]  Ruifeng Ding,et al.  Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model , 2010, Math. Comput. Model..

[14]  Feng Ding,et al.  Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems , 2010, Math. Comput. Model..

[15]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[16]  Feng Ding,et al.  Multirate crosstalk identification in xDSL systems , 2006, IEEE Transactions on Communications.

[17]  Yong Zhang,et al.  Computers and Mathematics with Applications , 2022 .

[18]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..

[19]  Feng Ding,et al.  Input-output data filtering based recursive least squares identification for CARARMA systems , 2010, Digit. Signal Process..

[20]  Tongwen Chen,et al.  Optimal design of multichannel transmultiplexers with stopband energy and passband magnitude constraints , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[21]  Feng Ding,et al.  Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data , 2010, Digit. Signal Process..

[23]  Tongwen Chen,et al.  2-Norm Based Recursive Design of Transmultiplexers with Designable Filter Length , 2006 .

[24]  Feng Ding,et al.  Gradient based and least-squares based iterative identification methods for OE and OEMA systems , 2010, Digit. Signal Process..

[25]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[26]  Feng Ding,et al.  Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises , 2009, Signal Process..

[27]  Feng Ding,et al.  Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems , 2010, Digit. Signal Process..

[28]  Feng Ding,et al.  A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems , 2010, Digit. Signal Process..

[29]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[30]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[31]  Feng Ding,et al.  Multi-innovation Extended Stochastic Gradient Algorithm and Its Performance Analysis , 2010, Circuits Syst. Signal Process..

[32]  Feng Ding,et al.  Identification methods for Hammerstein nonlinear systems , 2011, Digit. Signal Process..

[33]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[34]  Feng Ding,et al.  Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems , 2010, Comput. Math. Appl..

[35]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[36]  P. X. Liu,et al.  Multiinnovation Least-Squares Identification for System Modeling , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  W. Zheng Least-squares identification of a class of multivariable systems with correlated disturbances , 1999 .

[38]  Steven X. Ding,et al.  Recursive identification algorithms to design fault detection systems , 2010 .

[39]  Guowei Yang,et al.  Gradient-based iterative parameter estimation for Box-Jenkins systems , 2010, Comput. Math. Appl..

[40]  Shinsuke Nakagawa,et al.  Identification of the secondary actuator dynamics at frequencies beyond the Nyquist Rate in Dual-Stage Actuator Hard Disk Drive systems , 2010 .

[41]  Huizhong Yang,et al.  Gradient-based iterative identification for nonuniform sampling output error systems , 2011 .

[42]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[43]  Frank L. Lewis,et al.  Modal parametric identification of flexible mechanical structures in mechatronic systems , 2010 .

[44]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[45]  Feng Ding,et al.  Hierarchical least-squares based iterative identification for multivariable systems with moving average noises , 2010, Math. Comput. Model..

[46]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[47]  Li Xie,et al.  The residual based interactive stochastic gradient algorithms for controlled moving average models , 2009, Appl. Math. Comput..

[48]  Cosku Kasnakoglu,et al.  Modelling flow control problems under diverse operating conditions by identification and blending of multiple systems , 2010 .

[49]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[50]  Feng Ding,et al.  Computers and Mathematics with Applications Identification for Multirate Multi-input Systems Using the Multi-innovation Identification Theory , 2022 .