Peptide-induced domain formation in supported lipid bilayers: direct evidence by combined atomic force and polarized total internal reflection fluorescence microscopy.

Direct visualization of the mechanism(s) by which peptides induce localized changes to the structure of membranes has high potential for enabling understanding of the structure-function relationship in antimicrobial and cell-penetrating peptides. We have applied a combined imaging strategy to track the interaction of a model antimicrobial peptide, PFWRIRIRR-amide, with bacterial membrane-mimetic supported phospholipid bilayers comprised of POPE/TOCL. Our in situ studies revealed rapid reorganization of the POPE/TOCL membrane into localized TOCL-rich domains with a concomitant change in the organization of the membranes themselves, as reflected by changes in fluorescent-membrane-probe order parameter, upon introduction of the peptide.

[1]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[2]  W. V. van Blitterswijk,et al.  Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. , 1981, Biochimica et biophysica acta.

[3]  Robert E W Hancock,et al.  Role of membranes in the activities of antimicrobial cationic peptides. , 2002, FEMS microbiology letters.

[4]  A. Heikal,et al.  Dynamics imaging of lipid phases and lipid-marker interactions in model biomembranes. , 2006, Physical chemistry chemical physics : PCCP.

[5]  Manuel Prieto,et al.  Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study. , 2005, Journal of molecular biology.

[6]  Jing Yuan,et al.  The effects of fluorescent probes on model membrane organization: photo-induced lipid sorting and soft structure formation , 2009 .

[7]  S. Tatulian,et al.  Infrared spectroscopy of proteins and peptides in lipid bilayers , 1997, Quarterly Reviews of Biophysics.

[8]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[9]  M. Cabañas,et al.  Supported planar bilayers from hexagonal phases. , 2007, Biochimica et biophysica acta.

[10]  R. Birke,et al.  Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces , 2001, FEBS letters.

[11]  R. Epand,et al.  Lipid domains in bacterial membranes and the action of antimicrobial agents. , 2009, Biochimica et biophysica acta.

[12]  S. Ludtke,et al.  Neutron scattering in the plane of membranes: structure of alamethicin pores. , 1996, Biophysical journal.

[13]  M. Cabañas,et al.  Thermal response of domains in cardiolipin content bilayers. , 2007, Ultramicroscopy.

[14]  N. Thompson,et al.  Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery. , 1990, Biophysical journal.

[15]  R. Hancock,et al.  The role of cationic antimicrobial peptides in innate host defences. , 2000, Trends in microbiology.

[16]  Wan-Chen Lin,et al.  Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study. , 2006, Biophysical journal.

[17]  D. Sasaki,et al.  In situ scanning probe microscopy studies of tetanus toxin-membrane interactions. , 2006, Biophysical journal.

[18]  C. Yip,et al.  Molecular imaging of membrane interfaces reveals mode of β-glucosidase activation by saposin C , 2007, Proceedings of the National Academy of Sciences.

[19]  N. Thompson,et al.  Order in supported phospholipid monolayers detected by the dichroism of fluorescence excited with polarized evanescent illumination. , 1984, Biophysical journal.

[20]  Y. Mély,et al.  Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles. , 2008, Biophysical journal.

[21]  N. Dencher,et al.  Cardiolipin: a proton trap for oxidative phosphorylation , 2002, FEBS letters.

[22]  Ned S. Wingreen,et al.  A Curvature-Mediated Mechanism for Localization of Lipids to Bacterial Poles , 2006, PLoS Comput. Biol..

[23]  P. Schwille,et al.  Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  A. Heikal,et al.  Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. , 2009, Biophysical journal.

[25]  G. Feigenson,et al.  Nanoscopic lipid domain dynamics revealed by atomic force microscopy. , 2003, Biophysical journal.

[26]  K. Lohner New strategies for novel antibiotics: peptides targeting bacterial cell membranes. , 2009, General physiology and biophysics.

[27]  F. Sanz,et al.  Thermodynamic and structural study of the main phospholipid components comprising the mitochondrial inner membrane. , 2006, Biochimica et biophysica acta.

[28]  K. Gaus,et al.  Condensation of the plasma membrane at the site of T lymphocyte activation , 2005, The Journal of cell biology.

[29]  E Gratton,et al.  Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. , 2000, Biophysical journal.

[30]  D. Axelrod,et al.  Total Internal Reflection Fluorescence Microscopy , 2016 .

[31]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[32]  L. Johnston,et al.  Nanoscale imaging of domains in supported lipid membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[33]  C. Yip,et al.  Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. , 2006, Journal of structural biology.

[34]  G. Feigenson,et al.  Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes. , 1990, Biochimica et biophysica acta.

[35]  C. Yip,et al.  Combined scanning probe and total internal reflection fluorescence microscopy. , 2008, Methods.

[36]  R. Epand,et al.  Domains in bacterial membranes and the action of antimicrobial agents. , 2009, Molecular bioSystems.

[37]  S. Connell,et al.  The atomic force microscope as a tool for studying phase separation in lipid membranes (Review) , 2006 .

[38]  Y. Shai,et al.  Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. , 1992, Biochemistry.

[40]  M. Neil,et al.  Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. , 2005, Biophysical journal.

[41]  Jin Kusaka,et al.  Phosphatidylethanolamine Domains and Localization of Phospholipid Synthases in Bacillus subtilis Membranes , 2005, Journal of bacteriology.

[42]  I. Alves,et al.  Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. , 2009, Biochimica et biophysica acta.

[43]  B. Bechinger,et al.  Membrane order perturbation in the presence of antimicrobial peptides by (2)H solid-state NMR spectroscopy. , 2009, Biochimie.

[44]  P. Axelsen,et al.  Orientational order determination by internal reflection infrared spectroscopy. , 1996, Progress in biophysics and molecular biology.

[45]  Jin Kusaka,et al.  Lipid domains in bacterial membranes , 2006, Molecular microbiology.

[46]  E Maier,et al.  Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. , 1999, Biochemistry.

[47]  J. Korlach,et al.  Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  William Dowhan,et al.  Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange , 2000, Journal of bacteriology.

[49]  G. Omann,et al.  Combinatorial microscopy , 2006, Nature Reviews Molecular Cell Biology.

[50]  Christopher M Yip,et al.  Probing membrane order and topography in supported lipid bilayers by combined polarized total internal reflection fluorescence-atomic force microscopy. , 2009, Biophysical journal.

[51]  F. S. Cohen,et al.  Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. , 2006, Biophysical journal.

[52]  M. Giocondi,et al.  Probing supported model and native membranes using AFM , 2008 .

[53]  E. Gratton,et al.  Visualizing lipid structure and raft domains in living cells with two-photon microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  F. Hsu,et al.  Anionic Lipids Enriched at the ExPortal of Streptococcus pyogenes , 2006, Journal of bacteriology.

[55]  J. M. Wood,et al.  Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli , 2007, Molecular microbiology.

[56]  H. Mcconnell,et al.  Allogeneic stimulation of cytotoxic T cells by supported planar membranes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Herrmann,et al.  Detection of Lipid Domains in Model and Cell Membranes by Fluorescence Lifetime Imaging Microscopy of Fluorescent Lipid Analogues* , 2008, Journal of Biological Chemistry.

[58]  G. Feigenson Phase behavior of lipid mixtures , 2006, Nature chemical biology.

[59]  B. de Kruijff,et al.  Imaging domains in model membranes with atomic force microscopy , 2001, FEBS letters.

[60]  R. Vale,et al.  μManager: Open Source Software for Light Microscope Imaging , 2007, Microscopy Today.

[61]  H. Mcconnell,et al.  Supported phospholipid bilayers. , 1985, Biophysical journal.

[62]  L. Bagatolli,et al.  To see or not to see: lateral organization of biological membranes and fluorescence microscopy. , 2006, Biochimica et biophysica acta.

[63]  Z. Shao,et al.  Tris(hydroxymethyl)aminomethane (C4H11NO3) induced a ripple phase in supported unilamellar phospholipid bilayers. , 1994, Biochemistry.

[64]  C. Yip,et al.  Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. , 2009, Journal of structural biology.

[65]  P. Lewis,et al.  Dynamic localization of membrane proteins in Bacillus subtilis. , 2004, Microbiology.

[66]  Frederick A. Heberle,et al.  Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. , 2007, Biochimica et biophysica acta.

[67]  Luís M. S. Loura,et al.  Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging. , 2009, Chemistry and physics of lipids.

[68]  P. Axelsen,et al.  Determination of molecular order in supported lipid membranes by internal reflection Fourier transform infrared spectroscopy. , 1996, Biophysical journal.

[69]  B. Bechinger,et al.  Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. , 2007, Biophysical journal.

[70]  B. Desbat,et al.  Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides? , 2008, Biochemistry.

[71]  H. Zimmermann,et al.  [Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 2. Comparison of staining of living and fixed Hela-cells with NAO and DPPAO]. , 1984, Histochemistry.

[72]  J. Swanson,et al.  Cell membrane orientation visualized by polarized total internal reflection fluorescence. , 1999, Biophysical journal.

[73]  M. Longo,et al.  AFM for structure and dynamics of biomembranes. , 2009, Biochimica et biophysica acta.

[74]  R. Epand,et al.  Bacterial membranes as predictors of antimicrobial potency. , 2008, Journal of the American Chemical Society.

[75]  R. Epand,et al.  Tracking peptide-membrane interactions: insights from in situ coupled confocal-atomic force microscopy imaging of NAP-22 peptide insertion and assembly. , 2006, Journal of structural biology.

[76]  Richard M. Epand,et al.  Lipid Segregation Explains Selective Toxicity of a Series of Fragments Derived from the Human Cathelicidin LL-37 , 2009, Antimicrobial Agents and Chemotherapy.

[77]  T. Burghardt Model‐Independent fluorescence polarization for measuring order in a biological assembly , 1984, Biopolymers.

[78]  C. Yip,et al.  Coupling evanescent‐wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF–AFM , 2006 .

[79]  Kouji Matsumoto,et al.  Cardiolipin Domains in Bacillus subtilis Marburg Membranes , 2004, Journal of bacteriology.

[80]  W. Webb,et al.  Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. , 2007, Biochimica et biophysica acta.

[81]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[82]  R. Brasseur,et al.  Probing peptide–membrane interactions using AFM , 2008 .

[83]  Y. Dufrêne,et al.  Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. , 2009, Biochimica et biophysica acta.

[84]  A. Blume,et al.  Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? , 2009, Biochimica et biophysica acta.

[85]  J. Theriot,et al.  Complex spatial distribution and dynamics of an abundant Escherichia coli outer membrane protein, LamB , 2004, Molecular microbiology.

[86]  E Gratton,et al.  Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. , 1999, Biophysical journal.

[87]  I. Fishov,et al.  Coexistence of Domains with Distinct Order and Polarity in Fluid Bacterial Membranes¶ , 2002 .

[88]  C. Lafrance,et al.  On the relationship between the order parameter and the shape of orientation distributions , 1995 .

[89]  O. Coban,et al.  Transition from nanodomains to microdomains induced by exposure of lipid monolayers to air. , 2007, Biophysical journal.

[90]  Robert Bals,et al.  Antimicrobial Peptides , 2012, Drugs.

[91]  S. Gellman,et al.  Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides , 2006 .

[92]  D. Axelrod Fluorescence polarization microscopy. , 1989, Methods in cell biology.

[93]  A. Szabó,et al.  Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. , 1980, Biophysical journal.