Fast Independent Component Analysis Algorithm for Quaternion Valued Signals

An extension of the fast independent component analysis algorithm is proposed for the blind separation of both \BBQ-proper and \BBQ-improper quaternion-valued signals. This is achieved by maximizing a negentropy-based cost function, and is derived rigorously using the recently developed \mbi\BBH\BBR calculus in order to implement Newton optimization in the augmented quaternion statistics framework. It is shown that the use of augmented statistics and the associated widely linear modeling provides theoretical and practical advantages when dealing with general quaternion signals with noncircular (rotation-dependent) distributions. Simulations using both benchmark and real-world quaternion-valued signals support the approach.

[1]  Visa Koivunen,et al.  Complex random vectors and ICA models: identifiability, uniqueness, and separability , 2005, IEEE Transactions on Information Theory.

[2]  Francesco Carlo Morabito,et al.  Semi-Automatic Artifact Rejection Procedure based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps , 2005, IEC.

[3]  Louis L. Scharf,et al.  Second-order analysis of improper complex random vectors and processes , 2003, IEEE Trans. Signal Process..

[4]  W. Wirtinger Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen , 1927 .

[5]  Bernard C. Picinbono,et al.  Second-order complex random vectors and normal distributions , 1996, IEEE Trans. Signal Process..

[6]  S. Sangwine,et al.  Quaternion Polar Representation with a Complex Modulus and Complex Argument Inspired by the Cayley-Dickson Form , 2008, 0802.0852.

[7]  Danilo P. Mandic,et al.  Augmented second-order statistics of quaternion random signals , 2011, Signal Process..

[8]  Daniel Pérez Palomar,et al.  Quaternion ICA From Second-Order Statistics , 2011, IEEE Transactions on Signal Processing.

[9]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[10]  Erkki Oja,et al.  The FastICA Algorithm Revisited: Convergence Analysis , 2006, IEEE Transactions on Neural Networks.

[11]  Shengwei Zhang,et al.  Lagrange programming neural networks , 1992 .

[12]  Terrence J. Sejnowski,et al.  AUTOMATIC ARTIFACT REJECTION FOR EEG DATA USING HIGH-ORDER STATISTICS AND INDEPENDENT COMPONENT ANALYSIS , 2001 .

[13]  Николай Николаевич Вахания,et al.  Случайные векторы со значениями в кватернионных гильбертовых пространствах@@@Random vectors with values in quaternion Hilbert spaces , 1998 .

[14]  Lars H. Zetterberg,et al.  Codes for Combined Phase and Amplitude Modulated Signals in a Four-Dimensional Space , 1977, IEEE Trans. Commun..

[15]  Danilo P. Mandic,et al.  A Quaternion Widely Linear Adaptive Filter , 2010, IEEE Transactions on Signal Processing.

[16]  Danilo P. Mandic,et al.  Split quaternion nonlinear adaptive filtering , 2010, Neural Networks.

[17]  L. Scharf,et al.  Statistical Signal Processing of Complex-Valued Data: Notation , 2010 .

[18]  D. Mandic,et al.  Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models , 2009 .

[19]  Danilo P. Mandic,et al.  On the unitary diagonalisation of a special class of quaternion matrices , 2011, Appl. Math. Lett..

[20]  Stefano De Leo,et al.  Quaternionic analyticity , 2003, Appl. Math. Lett..

[21]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[22]  N. L. Bihan,et al.  Quaternionic Independent Component Analysis using hypercomplex nonlinearities , 2006 .

[23]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[24]  Ken Kreutz-Delgado,et al.  The Complex Gradient Operator and the CR-Calculus ECE275A - Lecture Supplement - Fall 2005 , 2009, 0906.4835.

[25]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[26]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[27]  A. Bos Complex gradient and Hessian , 1994 .

[28]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis of Complex Valued Signals , 2000, Int. J. Neural Syst..

[29]  Ignacio Santamaría,et al.  Properness and Widely Linear Processing of Quaternion Random Vectors , 2010, IEEE Transactions on Information Theory.

[30]  Tülay Adali,et al.  On Extending the Complex FastICA Algorithm to Noncircular Sources , 2008, IEEE Transactions on Signal Processing.

[31]  Toshihisa Tanaka,et al.  Separation of EOG artifacts from EEG signals using bivariate EMD , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[33]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[34]  P. Senthil Kumar,et al.  An Adaptive method to remove ocular artifacts from EEG signals using Wavelet Transform , 2009 .

[35]  Danilo P. Mandic,et al.  A Quaternion Gradient Operator and Its Applications , 2011, IEEE Signal Processing Letters.

[36]  R N Vigário,et al.  Extraction of ocular artefacts from EEG using independent component analysis. , 1997, Electroencephalography and clinical neurophysiology.

[37]  Stephen J. Sangwine,et al.  Quaternion involutions and anti-involutions , 2005, Comput. Math. Appl..

[38]  Danilo P. Mandic,et al.  Quaternion-Valued Nonlinear Adaptive Filtering , 2011, IEEE Transactions on Neural Networks.

[39]  Andrew Chang Quaternionic analysis , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  J. P. Ward Quaternions and Cayley Numbers , 1997 .

[41]  Alper T. Erdogan,et al.  On the Convergence of ICA Algorithms With Symmetric Orthogonalization , 2008, IEEE Transactions on Signal Processing.

[42]  Scott C. Douglas,et al.  Fixed-Point Algorithms for the Blind Separation of Arbitrary Complex-Valued Non-Gaussian Signal Mixtures , 2007, EURASIP J. Adv. Signal Process..

[43]  Danilo P. Mandic,et al.  Complex Valued Nonlinear Adaptive Filters , 2009 .

[44]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .