Quantifying the uncertainty in estimates of surface-atmosphere fluxes through joint evaluation of the SEBS and SCOPE models

Accurate estimation of global evapotranspiration is considered to be of great importance due to its key role in the terrestrial and atmospheric water budget. Global estimation of evapotranspiration on the basis of observational data can only be achieved by using remote sensing. Several algorithms have been developed that are capable of estimating the daily evapotranspiration from remote sensing data. Evaluation of remote sensing algorithms in general is problematic because of differences in spatial and temporal resolutions between remote sensing observations and field measurements. This problem can be solved in part by using soil-vegetation-atmosphere transfer (SVAT) models, because on the one hand these models provide evapotranspiration estimations also under cloudy conditions and on the other hand can scale between different temporal resolutions.

[1]  Wim G.M. Bastiaanssen,et al.  Evaluation of the temporal variability of the evaporative fraction in a tropical watershed , 2004 .

[2]  J. Norman,et al.  A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces , 2000 .

[3]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[4]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[5]  K. G. McNaughton,et al.  A ‘Lagrangian’ revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy , 1995 .

[6]  A. Obukhov,et al.  Turbulence in an atmosphere with a non-uniform temperature , 1971 .

[7]  Wilfried Brutsaert,et al.  Aspects of bulk atmospheric boundary layer similarity under free‐convective conditions , 1999 .

[8]  G. Petropoulos,et al.  A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture , 2009 .

[9]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[10]  W. Timmermans,et al.  Comparison of the estimated water and energy budgets of a large winter wheat field during AgriSAR 2006 by multiple sensors and models , 2008 .

[11]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[12]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[13]  Xiaoliang Lu,et al.  Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data , 2010 .

[14]  W. Verhoef,et al.  A Bayesian optimisation approach for model inversion of hyperspectral - multidirectional observations : the balance with A Priori information , 2007 .

[15]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[16]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[17]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[18]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[19]  Wenhan Qin,et al.  An Extended 3-D Radiosity–Graphics Combined Model for Studying Thermal-Emission Directionality of Crop Canopy , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  S. Seneviratne,et al.  Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations , 2011 .

[21]  O. Hartogensis Exploring Scintillometry in the Stable Atmospheric Surface Layer , 2006 .

[22]  Lu Zhang,et al.  Vineyard evaporative fraction based on eddy covariance in an arid desert region of Northwest China , 2008 .

[23]  H. Schmid,et al.  A Simple Parameterisation for Flux Footprint Predictions , 2004 .

[24]  Hans Peter Schmid,et al.  Experimental design for flux measurements: matching scales of observations and fluxes , 1997 .

[25]  Jean-Pierre Wigneron,et al.  Estimation of energy fluxes from thermal infrared, spectral reflectances, microwave data and SVAT modeling , 1999 .

[26]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[27]  José A. Sobrino,et al.  Surface temperature retrieval from Along Track Scanning Radiometer 2 data: Algorithms and validation , 2004 .

[28]  G. J. Roerink,et al.  Estimation of evaporative fractions by the use of vegetation and soil component temperature determined by means of dual-looking remote sensing , 2002 .

[29]  Matthew F. McCabe,et al.  Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction , 2005 .

[30]  T. Carlson An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery , 2007, Sensors (Basel, Switzerland).

[31]  Valentijn R. N. Pauwels,et al.  Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland , 2006 .

[32]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[33]  Pamela L. Nagler,et al.  Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration , 2007 .

[34]  Albert Olioso,et al.  Intercomparison of energy flux models using ASTER imagery at the SPARC 2004 site, Barrax, Spain, , 2005 .

[35]  William P. Kustas,et al.  An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes , 2007 .

[36]  Peter Droogers,et al.  Comparing evapotranspiration estimates from satellites, hydrological models and field data , 2000 .

[37]  Matthew F. McCabe,et al.  Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors , 2006 .

[38]  A. Holtslag,et al.  Interpretation of Crown Radiation Temperatures of a Dense Douglas fir Forest with Similarity Theory , 1999 .

[39]  Craig S. T. Daughtry,et al.  Estimation of the soil heat flux/net radiation ratio from spectral data , 1990 .

[40]  Massimo Menenti,et al.  Aggregation effects of surface heterogeneity in land surface processes , 1999 .

[41]  W. Verhoef,et al.  Regional evapotranspiration over the arid inland Heihe river basin in Northwest China , 2008 .

[42]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[43]  W. J. Massman,et al.  A model study of kBH−1 for vegetated surfaces using ‘localized near-field’ Lagrangian theory , 1999 .

[44]  I. R. Cowan Stomatal Behaviour and Environment , 1978 .

[45]  Xiao Zhiqiang,et al.  The method on generating LAI production by fusing BJ-1 remote sensing data and modis LAI product , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[46]  Qing Xiao,et al.  Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[48]  Françoise Gellens-Meulenberghs,et al.  Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data , 2010 .

[49]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[50]  Zhongbo Su,et al.  Quantifying the uncertainty in estimates of surface atmosphere fluxes by evaluation of SEBS and SCOPE models , 2010 .

[51]  William P. Kustas,et al.  An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere , 2001 .

[52]  L. Jia,et al.  Modeling heat exchanges at the land-atmosphere interface using multi-angular thermal infrared measurements , 2000 .

[53]  T. Carlson,et al.  Uncertainties in latent heat flux measurement and estimation: implications for using a simplified approach with remote sensing data , 2004 .

[54]  Craig S. T. Daughtry,et al.  Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices , 1993 .

[55]  Z. Su The Surface Energy Balance System ( SEBS ) for estimation of turbulent heat fluxes , 2002 .

[56]  Li Jia,et al.  Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements , 2007 .

[57]  C. Przybyła,et al.  Behaviour of the crop resistance of maize during a growing season. , 1989 .

[58]  Zhongbo Su,et al.  Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements , 2009 .

[59]  Massimo Menenti,et al.  Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements , 2003 .

[60]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[61]  Anne Verhoef,et al.  A parameterization of momentum roughness length and displacement height for a wide range of canopy densities , 1997 .