Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining

Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.

[1]  I. Hamzaoglu H. Kargupta,et al.  Distributed Data Mining Using An Agent Based Architecture , 1997, KDD 1997.

[2]  Rosalind W. Picard,et al.  Heartphones: Sensor Earphones and Mobile Application for Non-obtrusive Health Monitoring , 2009, 2009 International Symposium on Wearable Computers.

[3]  Mohamed Medhat Gaber,et al.  Data Stream Mining , 2010, Data Mining and Knowledge Discovery Handbook.

[4]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[5]  Philip S. Yu,et al.  Pocket Data Mining: Towards Collaborative Data Mining in Mobile Computing Environments , 2010, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence.

[6]  Matthias Klusch,et al.  Distributed data mining and agents , 2005, Eng. Appl. Artif. Intell..

[7]  Shonali Krishnaswamy,et al.  A hybrid model for improving response time in distributed data mining , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Lei Liu,et al.  MobiMine: monitoring the stock market from a PDA , 2002, SKDD.

[9]  Hillol Kargupta,et al.  On-board Vehicle Data Stream Monitoring Using MineFleet and Fast Resource Constrained Monitoring of Correlation Matrices , 2006, New Generation Computing.

[10]  Philip S. Yu,et al.  On demand classification of data streams , 2004, KDD.

[11]  Agostino Poggi,et al.  Developing Multi-agent Systems with JADE , 2007, ATAL.

[12]  Mohamed Medhat Gaber,et al.  Resource-aware Mining of Data Streams , 2005, J. Univers. Comput. Sci..

[13]  Mohamed Medhat Gaber,et al.  Open Mobile Miner: a toolkit for mobile data stream mining , 2009, KDD 2009.

[14]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[15]  Albert Bifet,et al.  DATA STREAM MINING A Practical Approach , 2009 .

[16]  Mohamed Medhat Gaber,et al.  MOBILITY IN AGENTS , A STUMBLING OR A BUILDING BLOCK ? , .

[17]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[18]  Kun Liu,et al.  VEDAS: A Mobile and Distributed Data Stream Mining System for Real-Time Vehicle Monitoring , 2004, SDM.

[19]  Hillol Kargupta,et al.  Dependency detection in MobiMine: a systems perspective , 2003, Inf. Sci..

[20]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[21]  Ian Witten,et al.  Data Mining , 2000 .

[22]  Arkady B. Zaslavsky Mobile agents: can they assist with context awareness? , 2004, IEEE International Conference on Mobile Data Management, 2004. Proceedings. 2004.

[23]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[24]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.

[25]  Nicholas R. Jennings,et al.  Agent Theories, Architectures, and Languages: A Survey , 1995, ECAI Workshop on Agent Theories, Architectures, and Languages.

[26]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[27]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[28]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[29]  Mohamed Medhat Gaber,et al.  Data Stream Mining Using Granularity-Based Approach , 2009, Foundations of Computational Intelligence.

[30]  Philip S. Yu,et al.  A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering , 2006, SAC '06.

[31]  Mohamed Medhat Gaber,et al.  Resource-aware Online Data Mining in Wireless Sensor Networks , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[32]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .