Bayesian inference using record values from Rayleigh model with application

In this article, based on a set of upper record values from a Rayleigh distribution, Bayesian and non-Bayesian approaches have been used to obtain the estimators of the parameter, and some lifetime parameters such as the reliability and hazard functions. Bayes estimators have been developed under symmetric (squared error) and asymmetric (LINEX and general entropy (GE)) loss functions. These estimators are derived using the informative and non-informative prior distributions for σ. We compare the performance of the presented Bayes estimators with known, non-Bayesian, estimators such as the maximum likelihood (ML) and the best linear unbiased (BLU) estimators. We show that Bayes estimators under the asymmetric loss functions are superior to both the ML and BLU estimators. The highest posterior density (HPD) intervals for the Rayleigh parameter and its reliability and hazard functions are presented. Also, Bayesian prediction intervals of the future record values are obtained and discussed. Finally, practical examples using real record values are given to illustrate the application of the results.

[1]  Dipak K. Dey,et al.  Bayesian and frequentist estimation and prediction for exponential distributions , 2006 .

[2]  Ahmed A. Soliman,et al.  Comparison of linex and quadratic bayes estimators foe the rayleigh distribution , 2000 .

[3]  Dipak K. Dey,et al.  On comparison of estimators in a generalized life model , 1992 .

[4]  P. R. Moorhead,et al.  Cost-driven parameter design , 1998 .

[5]  Zhuzhoma Evgeny Victorovich,et al.  Translation of Mathematical Monographs , 1996 .

[6]  J. A. Hartigan,et al.  Invariant Prior Distributions , 1964 .

[7]  Jafar Ahmadi,et al.  Estimation and Prediction in a Two-Parameter Exponential Distribution Based on k-Record Values under LINEX Loss Function , 2005 .

[8]  R. Calabria,et al.  Point estimation under asymmetric loss functions for left-truncated exponential samples , 1996 .

[9]  M. Madi,et al.  Bayesian prediction of temperature records using the Pareto model , 2004 .

[10]  Ahmed A. Soliman,et al.  Reliability estimation in a generalized life-model with application to the Burr-XII , 2002, IEEE Trans. Reliab..

[11]  Arturo J. Fernández Bayesian inference from type II doubly censored Rayleigh data , 2000 .

[12]  M. Ahsanullah,et al.  Estimation of the location and scale parameters of generalized exponential distribution based on order statistics , 2001 .

[13]  A. D. Cliff,et al.  Model Building and the Analysis of Spatial Pattern in Human Geography , 1975 .

[14]  Samir K. Bhattacharya,et al.  Bayesian survival analysis based on the rayleigh model , 1990 .

[15]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[16]  Anwar Hossain,et al.  On bayesian estimation and prediction from rayleigh based on type II censored data , 1995 .

[17]  Abd El-Baset A. Ahmad,et al.  On Bayesian interval prediction of future records , 2003 .

[18]  Narayanaswamy Balakrishnan,et al.  A Useful Property of Best Linear Unbiased Predictors with Applications to Life-Testing , 1997 .

[19]  V. Roshan Joseph,et al.  Quality Loss Functions for Nonnegative Variables and Their Applications , 2004 .

[20]  Danny D. Dyer,et al.  Best Linear Unbiased Estimator of the Parameter of the Rayleigh Distribution - Part I: Small Sample Theory for Censored Order Statistics , 1973 .

[21]  M. Ahsanullah,et al.  Linear prediction of record values for the two parameter exponential distribution , 1980 .

[22]  H. Nagaraja Asymptotic linear prediction of extreme order statistics , 1984 .

[23]  A. A. Soliman,et al.  Estimation of parameters of life from progressively censored data using Burr-XII model , 2005, IEEE Transactions on Reliability.

[24]  Nader Ebrahimi,et al.  Bayesian approach to life testing and reliability estimation using asymmetric loss function , 1991 .

[25]  Mohamed T. Madi,et al.  Bayesian prediction of the total time on test using doubly censored rayleigh data , 2002 .