Study on phase transition behavior and lamellar orientation of uniaxially stretched poly(ʟ-lactide) / cellulose nanocrystal-graft-poly(d-lactide) blend

[1]  Jianming Zhang,et al.  Green and facile surface modification of cellulose nanocrystal as the route to produce poly(lactic acid) nanocomposites with improved properties. , 2018, Carbohydrate polymers.

[2]  Y. Hishikawa,et al.  Characterization of Individual Hydrogen Bonds in Crystalline Regenerated Cellulose Using Resolved Polarized FTIR Spectra , 2017, ACS omega.

[3]  Jianming Zhang,et al.  Phase Transition Mechanism of Poly(l-lactic acid) among the α, δ, and β Forms on the Basis of the Reinvestigated Crystal Structure of the β Form , 2017 .

[4]  W. Hamad,et al.  In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing. , 2016, Carbohydrate polymers.

[5]  Jianming Zhang,et al.  Synthesis and characterization of cellulose nanocrystal-graft-poly(d-lactide) and its nanocomposite with poly(l-lactide) , 2016 .

[6]  A. Addad,et al.  Effect of biaxial stretching on thermomechanical properties of polylactide based nanocomposites , 2016 .

[7]  D. Hughes,et al.  Structure evolution in poly(ethylene terephthalate) (PET) – Multi-walled carbon nanotube (MWCNT) composite films during in-situ uniaxial deformation , 2016 .

[8]  E. Fortunati,et al.  PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. , 2016, Carbohydrate polymers.

[9]  J. Ru,et al.  Dominant β-Form of Poly(l-lactic acid) Obtained Directly from Melt under Shear and Pressure Fields , 2016 .

[10]  S. Mohanty,et al.  Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(lactic acid) , 2016 .

[11]  H. Tsuji,et al.  Stereocomplex Crystallization and Homocrystallization of Star-Shaped Four-Armed Stereo Diblock Poly(lactide)s with Different L-Lactyl Unit Contents: Isothermal Crystallization from the Melt. , 2016, The journal of physical chemistry. B.

[12]  V. Tsukruk,et al.  Ultrarobust Transparent Cellulose Nanocrystal‐Graphene Membranes with High Electrical Conductivity , 2016, Advanced materials.

[13]  E. B. Gowd,et al.  Molecular, Crystalline, and Lamellar Length-Scale Changes in the Poly(l-lactide) (PLLA) during Cyclopentanone (CPO) Desorption in PLLA/CPO Cocrystals , 2016 .

[14]  J. Labidi,et al.  Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites , 2015 .

[15]  Qing Xie,et al.  Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects. , 2015, The journal of physical chemistry. B.

[16]  L. Turng,et al.  Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. , 2015, Materials science & engineering. C, Materials for biological applications.

[17]  Duo Wu,et al.  Thermostable and Impermeable “Nano-Barrier Walls” Constructed by Poly(lactic acid) Stereocomplex Crystal Decorated Graphene Oxide Nanosheets , 2015 .

[18]  J. Bras,et al.  Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. , 2015, ACS applied materials & interfaces.

[19]  G. Ausias,et al.  Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites , 2015, Cellulose.

[20]  Xiangfang Peng,et al.  Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams , 2014, Cellulose.

[21]  H. Uyama,et al.  Green Composite of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Reinforced with Porous Cellulose , 2014 .

[22]  N. Kirby,et al.  Effects of Liquid CO2 Exposure on Semi‐Crystalline Polylactic Acid , 2014 .

[23]  Xiaohong Wang,et al.  Dendritic Crystallization of Poly(l-lactide)/poly(d-lactide) Stereocomplexes in Ultrathin Films , 2014 .

[24]  M. MacLachlan,et al.  Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents. , 2013, ACS macro letters.

[25]  T. Satoh,et al.  Synthesis and Stereocomplex Formation of Star-Shaped Stereoblock Polylactides Consisting of Poly(l-lactide) and Poly(d-lactide) Arms , 2013 .

[26]  Youssef Habibi,et al.  Polylactide (PLA)-based nanocomposites , 2013 .

[27]  Xuesi Chen,et al.  Modified PLA Homochiral Crystallites Facilitated by the Confinement of PLA Stereocomplexes , 2013 .

[28]  S. D. Vos,et al.  Temperature dependence of crystalline transition of highly-oriented poly(l-lactide)/poly(d-lactide) blend: In-situ synchrotron X-ray scattering study , 2013 .

[29]  N. Vasanthan,et al.  Study of Strain-Induced Crystallization and Enzymatic Degradation of Drawn Poly(l-lactic acid) (PLLA) Films , 2012 .

[30]  M. Sumita,et al.  Complex Crystal Formation of Poly(l-lactide) with Solvent Molecules , 2012 .

[31]  Alexandra E. Jones,et al.  Stereocomplexation in Cyclic and Linear Polylactide Blends , 2012 .

[32]  Chenwei Li,et al.  Lamellar orientation and crystallization dynamics of poly (L-lactic acid) thin films investigated by in-situ reflection absorption infrared spectroscopy. , 2011, The journal of physical chemistry. B.

[33]  R. Kuroki,et al.  Crystal Structure Analysis of Poly(l-lactic Acid) α Form On the basis of the 2-Dimensional Wide-Angle Synchrotron X-ray and Neutron Diffraction Measurements , 2011 .

[34]  F. Mantia,et al.  Green composites: A brief review , 2011 .

[35]  C. Rochas,et al.  New Insights on the strain-induced mesophase of poly(D,L-lactide): in situ WAXS and DSC study of the thermo-mechanical stability , 2010 .

[36]  Y. Ozaki,et al.  Melting Behavior of Epitaxially Crystallized Polycarprolactone on a Highly Oriented Polyethylene Thin Film Investigated by in Situ Synchrotron SAXS and Polarized Infrared Spectroscopy , 2010 .

[37]  Qi Zhou,et al.  Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – Crystallization and mechanical property effects , 2010 .

[38]  R. Prud’homme,et al.  Differences Between Crystals Obtained in PLLA-Rich or PDLA-Rich Stereocomplex Mixtures , 2010 .

[39]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[40]  G. Stoclet,et al.  Strain-Induced Molecular Ordering in Polylactide upon Uniaxial Stretching , 2010 .

[41]  Jonny J. Blaker,et al.  Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties , 2009 .

[42]  H. Tsuji,et al.  Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s , 2009 .

[43]  Jianming Zhang,et al.  Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC , 2008 .

[44]  S. Pensec,et al.  Stable dispersions of highly anisotropic nanoparticles formed by cocrystallization of enantiomeric diblock copolymers , 2007 .

[45]  A. Domb,et al.  Investigation of Phase Transitional Behavior of Poly(l-lactide)/Poly(d-lactide) Blend Used to Prepare the Highly-Oriented Stereocomplex , 2007 .

[46]  Y. Ozaki,et al.  Surface-Induced Anisotropic Chain Ordering of Polycarprolactone on Oriented Polyethylene Substrate: Epitaxy and Soft Epitaxy , 2006 .

[47]  B. Hsiao,et al.  Effects of high molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene , 2006 .

[48]  B. Hsiao,et al.  FLOW-INDUCED SHISH KEBAB PRECURSOR STRUCTURES IN ENTANGLED POLYMER MELTS , 2005 .

[49]  Y. Ozaki,et al.  Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy , 2005 .

[50]  Hideto Tsuji,et al.  Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. , 2005, Macromolecular bioscience.

[51]  Y. Ozaki,et al.  Infrared Spectroscopic Study of CH3···OC Interaction during Poly(l-lactide)/Poly(d-lactide) Stereocomplex Formation , 2005 .

[52]  Y. Ozaki,et al.  Weak Intermolecular Interactions during the Melt Crystallization of Poly(l-lactide) Investigated by Two-Dimensional Infrared Correlation Spectroscopy , 2004 .

[53]  J. Sugiyama,et al.  Structural details of crystalline cellulose from higher plants. , 2004, Biomacromolecules.

[54]  Xiaozhen Yang,et al.  A Spectroscopic Analysis of Poly(lactic acid) Structure , 2001 .

[55]  Y. Ikada,et al.  Epitaxial crystallization and crystalline polymorphism of polylactides , 2000 .

[56]  Y. Ikada,et al.  The frustrated structure of poly(l-lactide) , 2000 .

[57]  Y. Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. X. Binary blends from poly(D-lactide-CO-glycolide) and poly(L-lactide-CO-glycolide) , 1994 .

[58]  G. Strobl,et al.  Direct evaluation of the electron density correlation function of partially crystalline polymers , 1980 .

[59]  S. Hyon,et al.  Preparation of oriented β‐form poly(L‐lactic acid) by solid‐state extrusion , 2002 .

[60]  K. Diederichs,et al.  Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s , 1996 .