Pedometric mapping : bridging the gaps between conventional and pedometric approaches

Modern users of soil geo-information require finer and finer scales of detail, and maps of soil properties rather than soil classes, along with estimates of the uncertainty. The technological and theoretical advances in the last 20 years have lead to a number of new methodological improvements in the field of soil mapping. Most of these belong to the domain of the new emerging discipline - pedometrics . Pedometric mapping is generally characterised as a quantitative, (geo)statistical production of soil geoinformation, also referred to as the predictive or digital soil mapping .Many new pedometric techniques such as sampling optimisation algorithms, new interpolation techniques, fuzzy or continuous soil maps are, however, still not fully applied in soil mapping at smaller, i.e. regional scales. The polygon-based soil maps with crisp definition of soil classes are still used as the 'state of the art' methodology. For a long time, the term pedometrics has been used as a challenge or contradiction of soil taxonomies, i.e. traditional systems. This thesis is an attempt to bridge the gaps between the empirical and automated methods and improve the practice of soil mapping by designing an integrative pedometric methodology. The thesis covers seven research papers/topics listed down-bellow.SAMPLING - The chapter demonstrates how allocation of points in the feature space influences the efficiency of prediction. It suggests how to represent spatial multivariate soil forming environment; how to optimise sampling design for environmental correlation and which sampling strategies should be used for a general soil survey purposes.PRE-PROCESSING - In this chapter, systematic methods for reduction of errors (artefacts and outliers) in digital terrain parameters are suggested. These methods ensure more natural and more complete representation of the terrain morphology, which then also reflects on the success of spatial prediction.PHOTO-INTERPRETATION - This chapter suggests a semi-automated method for extrapolating photo-interpretation from a limited number of study sub-areas to the whole area. The intention was to enhance and not to replace the mapper's knowledge and expertise.INTERPOLATION - This chapter considers the development of a flexible statistical framework for spatial prediction that should be able to adopt both continuous and categorical soil variables. It suggests methods for dealing with non-normality of input data and multicollinearity of predictors.VISUALISATION - In this chapter, an algorithm is suggested to visualize multiple memberships and to analyse geographical and thematic confusion. Multiple memberships are visualized using the Hue-Saturation-Intensity model and GIS calculations on colours.ORGANIZATION - This chapter collates methods from previous chapters and describes organizational structure of a hybrid grid-based soil information system (SIS). It shows how to select a suitable grid size, how to aggregate and disaggregate soil information and what are the advantages and disadvantages of a grid-based SIS. The prediction maps are then made using both photo-interpretation and auxiliary maps, which ensures both continuous and crisp transitions.QUALITY CONTROL - In this chapter, systematic steps are suggested to assess the effective scale, accuracy of soil boundaries, accuracy of map legends, thematic purity of mapped entities and overlap among the adjacent entities. This assessment was based on a number of control surveys including control profile observations and photo-interpretations.The proposed pedometric mapping methodology can be used to enhance the practice of soil mapping making the soil maps more objective, detailed and more compatible for integration with other environmental geo-data. There is no need to use the concept of soil mapping units or use double-crisp soil maps anymore. On the other hand, instead of abandoning photo-interpretation, soil classification or empirical knowledge on soils, these methods can be successfully integrated with pedometric techniques.

[1]  Christiaan Mannaerts Assessment of the transferability of laboratory rainfall-runoff and rainfall-soil loss relationships to field and catchment scales. , 1992 .

[2]  X. Zhang,et al.  Coal fires in Northwest China; detection, monitoring, and prediction using remote sensing data , 1998 .

[3]  Larry Biehl,et al.  Use of combined digital elevation model and satellite radiometric data for regional soil mapping , 2000 .

[4]  Ángel M. Felicísimo,et al.  Parametric statistical method for error detection in digital elevation models , 1994 .

[5]  J. Bouma,et al.  Accuracy of spatial interpolation between point data on soil moisture supply capacity, compared with estimates from mapping units , 1982 .

[6]  A-Xing Zhu,et al.  Automated soil inference under fuzzy logic , 1996 .

[7]  Paul E. Gessler,et al.  Towards a New Framework for Modeling the Soil‐Landscape Continuum , 1994 .

[8]  Yann Kerr,et al.  Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions , 2002 .

[9]  Peter Scull,et al.  Predictive soil mapping: a review , 2003 .

[10]  Wietske Bijker,et al.  Radar for rain forest : a monitoring system for land cover change in the Colombian Amazon , 1997 .

[11]  J. L. van Genderen,et al.  Thermal modelling of underground coal fires in northern China , 1995 .

[12]  J. O. Akinyede,et al.  Highway cost modelling and route selection using a geotechnical information system , 1990 .

[13]  Albertus G. Toxopeus,et al.  ISM: an interactive spatial and temporal modelling system as a tool in ecosystem management , 1996 .

[14]  Richard L. Gorsuch Exploratory Factor Analysis , 1988 .

[15]  J. W. van Groenigen Constrained optimisation of spatial sampling : a geostatistical approach , 1999 .

[16]  H. Farah,et al.  Estimation of regional evaporation under different weather conditions from satellite and meteorological data: a case study in the Naivasha Basin, Kenya , 2001 .

[17]  Francis D. Hole,et al.  Suggested Terminology for Describing Soils as Three-dimensional Bodies 1 , 1953 .

[18]  Sabine Grunwald,et al.  3D Geographic Reconstruction and Visualization Techniques Applied to Land Resource Management , 2003, Trans. GIS.

[19]  A. L. Montoya,et al.  Urban disaster management: a case study of earthquake risk assessment in Cartago, Costa Rica , 2002 .

[20]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[21]  Rodríguez Parisca,et al.  Land use conflicts and planning strategies in urban fringes : a case study of Western Caracas, Venezuela , 1995 .

[22]  Fangju Wang,et al.  Comparison of Boolean and Fuzzy Classification Methods in Land Suitability Analysis by Using Geographical Information Systems , 1992 .

[23]  Edzer Pebesma,et al.  GSTAT: a program for geostatistical modelling, prediction and simulation , 1998 .

[24]  飯塚 寛,et al.  Aspect transformation in site productivity research , 1967 .

[25]  Russell G. Congalton,et al.  Quantifying Spatial Uncertainty in Natural Resources: Theory and Applications for GIS and Remote Sensing , 2000 .

[26]  D.J.J. Walvoort,et al.  Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models , 1997 .

[27]  C. J. van Westen,et al.  Application of geographic information systems to landslide hazard zonation , 1993 .

[28]  Alex B. McBratney,et al.  Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia. , 2000 .

[29]  Christine Pohl,et al.  Geometric aspects of multisensor image fusion for topographic map updating in the humid tropics , 1996 .

[30]  A. Young,et al.  Soil Survey and Land Evaluation. , 1982 .

[31]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[32]  S. J. Indorante,et al.  Positioning soil survey for the 21st century , 1996 .

[33]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[34]  A. McBratney,et al.  Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions , 1997 .

[35]  Marek Rusinkiewicz,et al.  A Conceptual Design of a Soil Database for a Geographical Information System , 1993, Int. J. Geogr. Inf. Sci..

[36]  W. C. Krumbein : Factors of Soil Formation: A System of Quantitative Pedology , 1942 .

[37]  P. Beckett,et al.  Quality and Usefulness of Soil Maps , 1968, Nature.

[38]  P.F.M. van Gaans,et al.  Continuous classification in soil survey: spatial correlation, confusion and boundaries , 1997 .

[39]  C. L. Binnqüist,et al.  The endurance of Mexican Amate paper : exploring additional dimensions to the sustainable development concept , 2003 .

[40]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[41]  L Fandiño A framework for ecological evaluation oriented at the establishment and management of protected areas: a case study of the Santuario de Iguaque, Colombia. , 1996 .

[42]  Y.A.M. Al Festawi The structural, paleogeographical and hydrocarbon systems analysis of the Ghadamis and Murzuq Basins, West Libya, with emphasis on their relation to the intervening Al Qarqaf Arch , 2001 .

[43]  Neil McKenzie,et al.  A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation , 1993 .

[44]  T. D'Avello,et al.  Why Are Those Lines Placed Where They Are?: An Investigation of Soil Map Recompilation Methods , 1998 .

[45]  S. Bie,et al.  Comparison of four independent soil surveys by air-photo interpretation, paphos area (Cyprus) , 1973 .

[46]  Ian S. Evans,et al.  Relations between land surface properties: Altitude, slope and curvature , 1999 .

[47]  Tomislav Hengl,et al.  Pixel and colour mixture : GIS techniques for visualization of fuzziness and uncertainty of natural resource inventories , 2002 .

[48]  Dominique King,et al.  Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities. , 2000 .

[49]  Richard W. Arnold,et al.  Soil Genesis and Classification , 1974 .

[50]  Stephen Wise,et al.  Assessing the quality for hydrological applications of digital elevation models derived from contours , 2000 .

[51]  R. M. Lark,et al.  Regression analysis with spatially autocorrelated error: simulation studies and application to mapping of soil organic matter , 2000, Int. J. Geogr. Inf. Sci..

[52]  Paul E. Gessler,et al.  Soil-Landscape Modelling and Spatial Prediction of Soil Attributes , 1995, Int. J. Geogr. Inf. Sci..

[53]  Nova Scotia,et al.  SOIL SURVEY of , 1969 .

[54]  G. Uehara,et al.  Geostatistical Analysis of Soil Chemical Properties of Large Land Areas. II. Kriging1 , 1982 .

[55]  Alex B. McBratney,et al.  An overview of pedometric techniques for use in soil survey , 2000 .

[56]  Kenneth C. McGwire,et al.  Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland , 1993 .

[57]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[58]  Dominique King,et al.  Predicting soil classes with parameters derived from relief and geologic materials in a sandstone region of the Vosges mountains (Northeastern France) , 1999 .

[59]  Bin Jiang Fuzzy overlay analysis and visualization in geographic information systems , 1996 .

[60]  Y. Zhou Application of radon transforms to the processing of airborne geophysical data , 1992 .

[61]  Tao Cheng,et al.  A process-oriented data model for fuzzy spatial objects , 1999 .

[62]  Philippe Lagacherie,et al.  Fuzziness and Uncertainty of Soil Boundaries: From Reality to Coding in GIS , 2020 .

[63]  Tetra Yanuariadi,et al.  Sustainable land allocation : GIS-based decision support for industrial forest plantation development in Indonesia , 1999 .

[64]  Davide Geneletti,et al.  Ecological evaluation for environmental impact assessment , 2002 .

[65]  Dr. A. P. A. Vink Land Use in Advancing Agriculture , 1975, Advanced Series in Agricultural Sciences.

[66]  Xuehua Liu,et al.  Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China , 2001 .

[67]  J. W. Groenigen,et al.  Constrained optimisation of soil sampling for minimisation of the kriging variance , 1999 .

[68]  Endre Dobos,et al.  The Use of DEM and Satellite Data for Regional Scale Soil Databases , 2002 .

[69]  A. Stein,et al.  A comparison of conventional and geostatistical methods to replace clouded pixels in NOAA-AVHRR images , 1998 .

[70]  A. Moameni,et al.  Soil quality changes under long - term wheat cultivation in the Marvdasht plain, South - Central Iran , 1999 .

[71]  A. L. Maclean,et al.  The use of variability diagrams to improve the interpretation of digital soil maps in a GIS , 1993 .

[72]  G. J. Mitchell,et al.  Principles and procedures of statistics: A biometrical approach , 1981 .

[73]  Marieke A. Eleveld,et al.  Exploring coastal morphodynamics of Ameland (the Netherlands) with remote sensing monitoring techniques and dynamic modelling in GIS , 1999 .

[74]  H. Jenny,et al.  The soil resource. Origin and behavior , 1983, Vegetatio.

[75]  Ze-Shen Wang An expert system for cartographic symbol design : een kennis systeem voor het ontwerpen van kartografische symbolen , 1992 .

[76]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[77]  Zhendong Huang Data integration for urban transport planning , 2003 .

[78]  M. Hutchinson A new procedure for gridding elevation and stream line data with automatic removal of spurious pits , 1989 .

[79]  Peter A. Burrough,et al.  The state of the art in pedometrics , 1994 .

[80]  A. Zhu,et al.  Derivation of Soil Properties Using a Soil Land Inference Model (SoLIM) , 1997 .

[81]  A. McBratney,et al.  Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates , 1986 .

[82]  Linda Lilburne The scale matcher: A framework for assessing scale compatibility of environmental data and models , 2002 .

[83]  S. W. Bie,et al.  THE ECONOMIC VALUE OF SOIL SURVEY INFORMATION , 1972 .

[84]  Richard Webster,et al.  The development of pedometrics , 1994 .

[85]  P. Goovaerts Geostatistics in soil science: state-of-the-art and perspectives , 1999 .

[86]  M. de Zuviría Mapping agrotopoclimates by integrating topographic, meteorological and land ecological data in a geographic information system : a case study of the Lom Sak area, North Central Thailand , 1992 .

[87]  Alex B. McBratney,et al.  A comparison of prediction methods for the creation of field-extent soil property maps , 2001 .

[88]  B. Minasny,et al.  On digital soil mapping , 2003 .

[89]  Igor V. Florinsky,et al.  Prediction of soil properties by digital terrain modelling , 2002, Environ. Model. Softw..

[90]  H. Ross Principles of Numerical Taxonomy , 1964 .

[91]  M. Hansen,et al.  A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products , 2000 .

[92]  Mobin-ud-Din Ahmad,et al.  Estimation of net groundwater use in irrigated river basins using geo-information techniques: a case study in Rechna Doab, Pakistan. , 2002 .

[93]  D. Brus,et al.  A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations , 1995 .

[94]  Alan M. MacEachren,et al.  Exploratory cartographic visualization: advancing the agenda , 1997 .

[95]  G. Tang,et al.  Evaluation on the accuracy of hydrologic data derived from DEMS of different spatial resolution, accuracy 2002 , 2002 .

[96]  H. Wackernagel,et al.  Mapping temperature using kriging with external drift: Theory and an example from scotland , 1994 .

[97]  R. Christensen Linear Models for Multivariate, Time Series, and Spatial Data , 1997 .

[98]  A. D. Gordon,et al.  Classification : Methods for the Exploratory Analysis of Multivariate Data , 1981 .

[99]  Derek Karssenberg,et al.  Environmental Modelling in GIS , 1998 .

[100]  W. F. Feringa,et al.  A colour handbook for GIS users and cartographers , 1999 .

[101]  Stephen J. Ventura,et al.  Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin , 1997 .

[102]  S. W. Bie,et al.  Soil-Information Systems , 1978 .

[103]  Andrew K. Skidmore,et al.  Remote sensing of soils in a eucalypt forest environment. , 1997 .

[104]  G.H.R. Bocco-Verdinelli Gully erosion analysis using remote sensing and geographic information systems : a case study in Central Mexico , 1990 .

[105]  A. B. A. A. Mohamed An integrated agro-economic and agro-ecological framework for land use planning and policy analysis. , 1999 .

[106]  Alex. B. McBratney,et al.  Some considerations on methods for spatially aggregating and disaggregating soil information , 1998, Nutrient Cycling in Agroecosystems.

[107]  Chu Thai Hoanh,et al.  Development of a computerized aid to integrated land use planning (CAILUP) at regional level in irrigated areas. , 1996 .

[108]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[109]  Peter W. Lane,et al.  Generalized linear models in soil science , 2002 .

[110]  N. McKenzie,et al.  Spatial prediction of soil properties using environmental correlation , 1999 .

[111]  D. P. Shrestha,et al.  Aspects of erosion and sedimentation in the Nepalese Himalaya: highland-lowland relations. , 2000 .

[112]  P. A. Shary,et al.  Fundamental quantitative methods of land surface analysis , 2002 .

[113]  Patrick Ogao,et al.  Exploratory visualization of temporal geospatial data using animation , 2002 .

[114]  Francis D. Hole,et al.  An approach to landscape analysis with emphasis on soils , 1978 .

[115]  W.H.E. de Man,et al.  Surveys : informatie als norm : een verkenning van de institutionalisering van dorp-surveys in Thailand en op de Filippijnen , 1996 .

[116]  Alison While Making information technology work. , 2005, British journal of community nursing.

[117]  Zengshan Duan Optimization modelling of a river-aquifer system with technical interventions : a case study for the Huangshui river and the coastal aquifer, Shandong, China , 1996 .

[118]  M. Wand,et al.  Kriging with Nonparametric Variance Function Estimation , 1999, Biometrics.

[119]  E. M. Schetselaar Integrated analyses of granite-gneiss terrain from field and multisource remotely sensed data - A case study from the Canadian Shield , 2000 .

[120]  Rob M. Hootsmans Fuzzy sets and series analysis for visual decision support in spatial data exploration , 1996 .

[121]  Berthold K. P. Horn,et al.  Hill shading and the reflectance map , 1981, Proceedings of the IEEE.

[122]  T. Ceccarelli,et al.  Towards a planning support system for communal areas in the Zambezi Valley, Zimbabwe: a multi criteria evaluation linking farm household analysis, land evaluation and geographic information systems. , 1997 .

[123]  A. Warrick,et al.  Optimization of Sampling Locations for Variogram Calculations , 1987 .

[124]  Simon E. Cook,et al.  A Rule-based System to Map Soil Properties , 1996 .

[125]  Gerard B. M. Heuvelink,et al.  Modelling soil variation: past, present, and future , 2001 .

[126]  R. Nijmeijer,et al.  ILWIS 3.0 Academic : user's guide , 2001 .

[127]  W. Näther Optimum experimental designs , 1994 .

[128]  W. W. Stroup,et al.  A Generalized Linear Model Approach to Spatial Data Analysis and Prediction , 1997 .

[129]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[130]  A. Farshad Analysis of integrated soil and water management practices within different agricultural systems under semi-arid conditions of Iran and evaluation of their sustainability. , 1997 .

[131]  Alex B. McBratney,et al.  Spatial prediction of soil properties from landform attributes derived from a digital elevation model , 1994 .

[132]  Anne Gobin,et al.  Soil-landscape modelling to quantify spatial variability of soil texture. Modelling of transport pro , 1999 .

[133]  A. McBratney,et al.  Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging , 1995 .

[134]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[135]  Paul L. G. Vlek,et al.  Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques , 2002 .

[136]  Kurt Hornik,et al.  Gstat: Multivariable Geostatistics for S , 2003 .

[137]  Gerard B. M. Heuvelink,et al.  Error Propagation in Environmental Modelling with GIS , 1998 .

[138]  Carlos López,et al.  Improving the Elevation Accuracy of Digital Elevation Models: A Comparison of Some Error Detection Procedures , 2000, Trans. GIS.

[139]  P. Fisher Visualizing Uncertainty in Soil Maps by Animation , 1993 .

[140]  Dominique King,et al.  Improving the kriging of a soil variable using slope gradient as external drift , 1996 .

[141]  John T. Finn,et al.  Use of the Average Mutual Information Index in Evaluating Classification Error and Consistency , 1993, Int. J. Geogr. Inf. Sci..

[142]  John Triantafilis,et al.  Land suitability assessment in the Namoi Valley of Australia, using a continuous model , 2001 .

[143]  J. Sevink,et al.  From soil map to information system: collection and use of information on Dutch soils. , 1995 .

[144]  M. F. Baumgardner,et al.  Selection of appropriate cell sizes for thematic maps. , 1990 .

[145]  A-Xing Zhu,et al.  Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic , 2001 .

[146]  P. John,et al.  Effect of data source, grid resolution, and flow-routing method on computed topographic attributes , 2000 .

[147]  C. Valenzuela,et al.  Soil geographic database: structure and application examples. , 1990 .

[148]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[149]  J. Eastman,et al.  Long sequence time series evaluation using standardized principal components , 1993 .

[150]  David J. Strauss,et al.  Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 2. An Efficient Spatial Sampling Algorithm Suitable for Multiple Linear Regression Model Identification and Estimation , 1995 .

[151]  J. J. de Gruijter,et al.  Fuzzy sets voor zachte klassegrenzen: Toepassing op het landevaluatiesysteem BODEGA , 2001 .

[152]  Yiman Wang Satellite SAR Imagery for Topographic Mapping of the Tidal Flat Areas in the Dutch Wadden Sea , 1997 .

[153]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[154]  Jaroslav Hofierka,et al.  Modelling Topographic Potential for Erosion and Deposition Using GIS , 1996, Int. J. Geogr. Inf. Sci..

[155]  B. Orlic,et al.  Predicting Subsurface Conditions for Geotechnical Modelling , 1997 .

[156]  James C. Bell,et al.  Quantitative Soil‐Landscape Modeling for Estimating the Areal Extent of Hydromorphic Soils , 1997 .

[157]  B. Hudson,et al.  The Soil Survey as Paradigm-based Science , 1992 .

[158]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[159]  Yizong Cheng,et al.  Statistical characterization of remotely sensed soil moisture images , 1997 .

[160]  David R. Montgomery,et al.  A process-based model for colluvial soil depth and shallow landsliding using digital elevation data , 1995 .

[161]  P. Kitanidis Generalized covariance functions in estimation , 1993 .

[162]  W. Shi,et al.  Modelling positional and thematic uncertainties in integration of remote sensing and geographic information systems , 1994 .

[163]  D. J. Brus,et al.  Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion) , 1997 .

[164]  J. J. Gruijter,et al.  Quality of soil maps : a comparison of soil survey methods in a sandy area , 1986 .

[165]  Daniel G. Brown,et al.  Mapping historical forest types in Baraga County Michigan, USA as fuzzy sets , 2004, Plant Ecology.

[166]  Alfred Stein,et al.  Spatial prediction by linear kriging , 1999 .

[167]  Ben Gorte,et al.  Interpolation between isolines based on the Borgefors distance transform , 1990 .

[168]  J. Deckers,et al.  World Reference Base for Soil Resources , 1998 .

[169]  R. Lyman Ott.,et al.  An introduction to statistical methods and data analysis , 1977 .

[170]  R. A. MacMillan,et al.  A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic , 2000, Fuzzy Sets Syst..

[171]  Boucneau,et al.  Integrating properties of soil map delineations into ordinary kriging , 1998 .

[172]  Marcel R. Hoosbeek,et al.  Towards the quantitative modeling of pedogenesis — a review , 1992 .

[173]  Graciela Metternicht,et al.  Detecting and monitoring land degradation features and processes in the Cochabamba valleys, Bolivia : a synergistic approach , 1996 .

[174]  Budiman Minasny,et al.  A rudimentary mechanistic model for soil formation and landscape development: II. A two-dimensional model incorporating chemical weathering , 2001 .

[175]  H. A. Haroni,et al.  The Zarshuan gold deposit model applied in a mineral exploration GIS in Iran , 2000 .

[176]  P. Misra Modelling Settlement Patterns for Metropolitan Regions: Inputs from Remote Sensing , 1996 .

[177]  David G. Rossiter,et al.  Guidelines for evaluating the adequacy of soil resource inventories , 1987 .

[178]  B. Kapralos,et al.  I An Introduction to Digital Image Processing , 2022 .

[179]  S. Looney,et al.  Use of the Correlation Coefficient with Normal Probability Plots , 1985 .

[180]  Kaufman,et al.  A New Color-Namiing System for Graphics Languages , 1982, IEEE Computer Graphics and Applications.

[181]  Jianquan Cheng,et al.  Modelling spatial and temporal urban growth , 2003 .

[182]  Jay C. Bell,et al.  Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling , 2001 .

[183]  Igor V. Florinsky,et al.  Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale , 2000, Int. J. Geogr. Inf. Sci..

[184]  Alex B. McBratney,et al.  Design of optimal sample spacings for mapping soil using fuzzy-k-means and regionalized variable theory , 1990 .

[185]  Rhodora M. Gonzalez,et al.  Platforms and terraces: bridging participation and GIS in joint-learning for watershed management with the Ifugaos of the Philippines. , 2000 .

[186]  Abdulbaset Musbah Abadi,et al.  Tectonics of the Sirt basin : inferences from tectonic subsidence analysis, stress inversion and gravity modeling , 2002 .

[187]  Luisa Pereira A robust and adaptive matching procedure for automatic modelling of terrain relief , 1996 .

[188]  S. de Bruin,et al.  Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM) , 1998 .

[189]  Pierre Goovaerts,et al.  Using elevation to aid the geostatistical mapping of rainfall erosivity , 1999 .

[190]  Dominique King,et al.  Using multiple external drifts to estimate a soil variable , 2003 .

[191]  Igor V. Florinsky,et al.  Accuracy of Local Topographic Variables Derived from Digital Elevation Models , 1998, Int. J. Geogr. Inf. Sci..

[192]  Francis Seeley Foote,et al.  Surveying theory and practice , 1940 .

[193]  Jonathan Cohen Statistical Methods in Soil and Land Resource Survey , 1992 .

[194]  Jerry Banks,et al.  Handbook of simulation - principles, methodology, advances, applications, and practice , 1998, A Wiley-Interscience publication.

[195]  Zhilin Li A comparative study of the accuracy of digital terrain models (DTMs) based on various data models , 1994 .

[196]  R. E. White,et al.  Principles and practice of soil science , 1997 .

[197]  P. Wolski Application of reservoir modelling to hydrotopes indentified by remote sensing , 1999 .

[198]  Sucharita Gopal,et al.  Fuzzy set theory and thematic maps: accuracy assessment and area estimation , 2000, Int. J. Geogr. Inf. Sci..

[199]  Clayton V. Deutsch,et al.  Geostatistical Software Library and User's Guide , 1998 .

[200]  L.A.E. Vullings,et al.  WORKSHOP REPORT ON SPATIAL DATA USABILITY , 2002 .

[201]  Peter A. Burrough,et al.  High-resolution landform classification using fuzzy k-means , 2000, Fuzzy Sets Syst..