Analysis and Demonstration of an IIP3 Improvement Technique for Low-Power RF Low-Noise Amplifiers

This paper describes a linearization method to enhance the third-order distortion performance of a subthreshold common-source cascode low-noise amplifier (LNA) without extra power consumption by using passive components. An inductor between the gate of the cascode transistor and the power supply in combination with a digitally programmable capacitor between the gate and the drain of the cascode transistor enable to improve the third-order intermodulation intercept point (IIP3) of a subthreshold LNA. The theoretical mechanisms that underlie the linearity improvement are analyzed comprehensively under the consideration of the LNA’s input stage, cascode stage, reverse isolation, and stability. A 1.8-GHz LNA was designed and fabricated using 0.11- $\mu \text{m}$ CMOS technology to prove the concept. Measurement results reveal that the linearized low-power LNA has a 14.8-dB voltage gain, a 3.7-dB noise figure, and a −3.7-dBm IIP3 with a power consumption of 0.336 mW.

[1]  Marvin Onabajo,et al.  Linearization of subthreshold low-noise amplifiers , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[2]  Jerzy J. Dabrowski,et al.  Two-tone PLL for on-chip IP3 test , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[3]  Kartikeya Mayaram,et al.  A 250 mV, 352 $\mu$W GPS Receiver RF Front-End in 130 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[4]  Fernando Silveira,et al.  MOST Moderate–Weak-Inversion Region as the Optimum Design Zone for CMOS 2.4-GHz CS-LNAs , 2014, IEEE Transactions on Microwave Theory and Techniques.

[5]  Pui-In Mak,et al.  A 0.35-V 520- $\mu \text{W}$ 2.4-GHz Current-Bleeding Mixer With Inductive-Gate and Forward-Body Bias, Achieving >13-dB Conversion Gain and >55-dB Port-to-Port Isolation , 2017, IEEE Transactions on Microwave Theory and Techniques.

[6]  Chia-Yu Yao,et al.  A –$21.2$ -dBm Dual-Channel UHF Passive CMOS RFID Tag Design , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Sang-Gug Lee,et al.  A low-power CMOS direct conversion receiver with 3-dB NF and 30-kHz flicker-noise corner for 915-MHz band IEEE 802.15.4 ZigBee standard , 2006 .

[8]  Ramesh Harjani,et al.  A Sub-1-V 194- $\mu{\hbox{W}}$ 31-dB FOM 2.3–2.5-GHz Mixer-First Receiver Frontend for WBAN With Mutual Noise Cancellation , 2016, IEEE Transactions on Microwave Theory and Techniques.

[9]  Marvin Onabajo,et al.  Low-power low-noise amplifier IIP3 improvement under consideration of the cascode stage , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[10]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Piet Wambacq,et al.  A Mixed-Signal Design Roadmap , 2001, IEEE Des. Test Comput..

[12]  Naser Pour Aryan Design and Modeling of Inductors, Capacitors and Coplanar Waveguides at Tens of GHz Frequencies , 2014 .

[13]  Sayfe Kiaei,et al.  A new method to stabilize high frequency high gain CMOS LNA , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[14]  Y. Deval,et al.  A 60µW LNA for 2.4 GHz wireless sensors network applications , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  John F. Spina,et al.  Sinusoidal analysis and modeling of weakly nonlinear circuits : with application to nonlinear interference effects , 1980 .

[16]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[17]  P. Heydari,et al.  A Novel Ultra-Low Power (ULP) Low Noise Amplifier using Differential Inductor Feedback , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[18]  Li Xu,et al.  Inductorless linearization of low-power active mixers , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[19]  Yong-Bin Kim,et al.  A built-in calibration system to optimize third-order intermodulation performance of RF amplifiers , 2014, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).

[20]  S. Mohammadi,et al.  A 3GHz subthreshold CMOS low noise amplifier , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[21]  Chuan-Yu Chang,et al.  A macro model of silicon spiral inductor , 2002 .

[22]  Congyin Shi,et al.  On-Chip Two-Tone Synthesizer Based on a Mixing-FIR Architecture , 2017, IEEE Journal of Solid-State Circuits.

[23]  Yong-Bin Kim,et al.  Accurate and Efficient On-Chip Spectral Analysis for Built-In Testing and Calibration Approaches , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[24]  Mourad N. El-Gamal,et al.  Short Channel Output Conductance Enhancement Through Forward Body Biasing to Realize a 0.5 V 250 $\upmu \text{W}$ 0.6–4.2 GHz Current-Reuse CMOS LNA , 2016, IEEE Journal of Solid-State Circuits.

[25]  Heng Zhang,et al.  A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA , 2008, IEEE Journal of Solid-State Circuits.

[26]  Oliver King,et al.  A 1 V 5 mA Multimode IEEE 802.15.6/Bluetooth Low-Energy WBAN Transceiver for Biotelemetry Applications , 2013, IEEE Journal of Solid-State Circuits.

[27]  Mohamad Sawan,et al.  A Low-Power Dual-Injection-Locked RF Receiver With FSK-to-OOK Conversion for Biomedical Implants , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Marvin Onabajo,et al.  IIP3 Enhancement of Subthreshold Active Mixers , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[29]  Marvin Onabajo,et al.  Input impedance matching optimization for adaptive low-power low-noise amplifiers , 2013 .

[30]  Kiat Seng Yeo,et al.  A Subthreshold Low-Noise Amplifier Optimized for Ultra-Low-Power Applications in the ISM Band , 2008, IEEE Transactions on Microwave Theory and Techniques.

[31]  J. Laskar,et al.  A fully monolithic 260-/spl mu/W, 1-GHz subthreshold low noise amplifier , 2005, IEEE Microwave and Wireless Components Letters.

[32]  S. Mohammadi,et al.  A 500/spl mu/W 2.4GHz CMOS Subthreshold Mixer for Ultra Low Power Applications , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[33]  E. Skafidas,et al.  A subthreshold down converter optimized for super-low-power applications in MICS Band , 2011, 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS).