Left ventricular border tracking using cardiac motion models and optical flow.

The use of automated methods is becoming increasingly important for assessing cardiac function quantitatively and objectively. In this study, we propose a method for tracking three-dimensional (3-D) left ventricular contours. The method consists of a local optical flow tracker and a global tracker, which uses a statistical model of cardiac motion in an optical-flow formulation. We propose a combination of local and global trackers using gradient-based weights. The algorithm was tested on 35 echocardiographic sequences, with good results (surface error: 1.35 ± 0.46 mm, absolute volume error: 5.4 ± 4.8 mL). This demonstrates the method's potential in automated tracking in clinical quality echocardiograms, facilitating the quantitative and objective assessment of cardiac function.

[1]  James S. Duncan,et al.  Segmentation of Myocardial Volumes from Real-Time 3D Echocardiography Using an Incompressibility Constraint , 2007, MICCAI.

[2]  Andrés Santos,et al.  Tracking of regions-of-interest in myocardial contrast echocardiography. , 2004, Ultrasound in medicine & biology.

[3]  K J Parker,et al.  Multilevel and motion model-based ultrasonic speckle tracking algorithms. , 1998, Ultrasound in medicine & biology.

[4]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[5]  James S. Duncan,et al.  Boundary element method-based regularization for recovering of LV deformation , 2007, Medical Image Anal..

[6]  Raj Shekhar,et al.  Fully automatic segmentation of left ventricular myocardium in real-time three-dimensional echocardiography , 2006, SPIE Medical Imaging.

[7]  Michael Unser,et al.  Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation , 2005, IEEE Transactions on Medical Imaging.

[8]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[9]  A. Laine,et al.  Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. , 2005, Ultrasound in medicine & biology.

[10]  J. Bosch,et al.  Segmental wall motion classification in echocardiograms using compact shape descriptors. , 2008, Academic radiology.

[11]  Michael G. Strintzis,et al.  Tracking the left ventricle in echocardiographic images by learning heart dynamics , 1999, IEEE Transactions on Medical Imaging.

[12]  C. Lamberti,et al.  Evaluation of differential optical flow techniques on synthesized echo images , 1996, IEEE Transactions on Biomedical Engineering.

[13]  I. Wolf,et al.  ROPES: a semiautomated segmentation method for accelerated analysis of three-dimensional echocardiographic data , 2002, IEEE Transactions on Medical Imaging.

[14]  James D. Thomas,et al.  Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates , 1998, IEEE Transactions on Medical Imaging.

[15]  Daniel Rueckert,et al.  Segmentation of cardiac MR and CT image sequences using model-based registration of a 4D statistical model , 2007, SPIE Medical Imaging.

[16]  Attila Nemes,et al.  Usefulness of ultrasound contrast agent to improve image quality during real-time three-dimensional stress echocardiography. , 2007, The American journal of cardiology.

[17]  Milan Sonka,et al.  Computer-aided diagnosis via model-based shape analysis: automated classification of wall motion abnormalities in echocardiograms. , 2005, Academic radiology.

[18]  Fredrik Orderud,et al.  Real-Time Tracking of the Left Ventricle in 3D Echocardiography Using a State Estimation Approach , 2007, MICCAI.

[19]  J. Alison Noble,et al.  Automated 3-D echocardiography analysis compared with manual delineations and SPECT MUGA , 2002, IEEE Transactions on Medical Imaging.

[20]  Jøger Hansegård,et al.  Constrained Active Appearance Models for Segmentation of Triplane Echocardiograms , 2007, IEEE Transactions on Medical Imaging.

[21]  Carlos R. Castro-Pareja,et al.  Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models , 2005, IEEE Transactions on Medical Imaging.

[22]  J. Gower Generalized procrustes analysis , 1975 .

[23]  G. Mailloux,et al.  Computer Analysis of Heart Motion from Two-Dimensional Echocardiograms , 1987, IEEE Transactions on Biomedical Engineering.

[24]  Michael Unser,et al.  Myocardial motion analysis from B-mode echocardiograms , 2005, IEEE Transactions on Image Processing.

[25]  Paul Suetens,et al.  Three-Dimensional Cardiac Strain Estimation Using Spatio–Temporal Elastic Registration of Ultrasound Images: A Feasibility Study , 2008, IEEE Transactions on Medical Imaging.

[26]  Frits Mastik,et al.  Accuracy in Prediction of Catheter Rotation in IVUS With Feature-Based Optical Flow—A Phantom Study , 2008, IEEE Transactions on Information Technology in Biomedicine.

[27]  Jonas Crosby,et al.  New Noninvasive Method for Assessment of Left Ventricular Rotation: Speckle Tracking Echocardiography , 2005, Circulation.

[28]  S. Oe,et al.  Motion analysis of echocardiograph using optical flow method , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[29]  Fredrik Orderud,et al.  Real-Time Active Shape Models for Segmentation of 3D Cardiac Ultrasound , 2007, CAIP.

[30]  Elsa D. Angelini,et al.  LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography , 2001, IEEE Transactions on Medical Imaging.

[31]  Robert D. Howe,et al.  Fast block flow tracking of atrial septal defects in 4D echocardiography , 2008, Medical Image Anal..

[32]  Bram van Ginneken,et al.  Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database , 2006, Medical Image Anal..

[33]  N. de Jong,et al.  P2A-6 Automatic Segmentation of the Left Ventricle in 3D Echocardiography Using Active Appearance Models , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[34]  Gerard van Burken,et al.  Automatic active appearance model segmentation of 3D echocardiograms , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[35]  James S. Duncan,et al.  Combinative Multi-scale Level Set Framework for Echocardiographic Image Segmentation , 2002, MICCAI.

[36]  Alessandro Sarti,et al.  Tracking of left ventricular long axis from real-time three-dimensional echocardiography using optical flow techniques , 2006, IEEE Transactions on Information Technology in Biomedicine.

[37]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[38]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Milan Sonka,et al.  Automatic segmentation of echocardiographic sequences by active appearance motion models , 2002, IEEE Transactions on Medical Imaging.

[40]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[41]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[42]  Dorin Comaniciu,et al.  Robust real-time myocardial border tracking for echocardiography: an information fusion approach , 2004, IEEE Transactions on Medical Imaging.

[43]  Johan H. C. Reiber,et al.  Sparse Registration for Three-Dimensional Stress Echocardiography , 2008, IEEE Transactions on Medical Imaging.

[44]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[45]  Andriy Myronenko,et al.  LV Motion Tracking from 3D Echocardiography Using Textural and Structural Information , 2007, MICCAI.

[46]  Dorin Comaniciu,et al.  A fast and accurate tracking algorithm of left ventricles in 3D echocardiography , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[47]  Johan Montagnat,et al.  Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images , 2003, Pattern Recognit. Lett..

[48]  Nico de Jong,et al.  Left ventricular volume estimation in cardiac three-dimensional ultrasound: a semiautomatic border detection approach. , 2005, Academic radiology.

[49]  Livia Kapusta,et al.  Segmentation of the heart muscle in 3-D pediatric echocardiographic images. , 2007, Ultrasound in medicine & biology.

[50]  T. Kawagishi,et al.  Speckle Tracking for Assessment of Cardiac Motion and Dyssynchrony , 2008, Echocardiography.

[51]  Dorin Comaniciu,et al.  Database-guided segmentation of anatomical structures with complex appearance , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[52]  Alessandro Sarti,et al.  Left ventricular volume estimation for real-time three-dimensional echocardiography , 2002, IEEE Transactions on Medical Imaging.

[53]  J. Bosch,et al.  Automated border detection in three-dimensional echocardiography: principles and promises. , 2010, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[54]  James S. Duncan,et al.  Estimation of 3D left ventricular deformation from echocardiography , 2001, Medical Image Anal..

[55]  O. Gérard,et al.  Efficient model-based quantification of left ventricular function in 3-D echocardiography , 2002, IEEE Transactions on Medical Imaging.

[56]  Zvi Friedman,et al.  Improving motion estimation by accounting for local image distortion. , 2004, Ultrasonics.

[57]  Shunichi Homma,et al.  Region-based endocardium tracking on real-time three-dimensional ultrasound. , 2009, Ultrasound in medicine & biology.