Pressure-induced magnetic moment collapse and insulator-to-semimetal transition in BiCoO3

The structural stability, magnetic properties and electronic structure of tetragonal BiCoO(3) under pressure have been studied by first-principles density functional calculations. The calculated results reveal that no tetragonal-to-cubic and ferroelectric-to-paraelectric phase transitions occur up to 30 GPa with a volume compression of about 25%. An electronic spin crossover transition of the Co(3+) ion from the high-spin to nonmagnetic low-spin configuration (magnetic moment collapse) occurs at 4 GPa by about 4.87% volume compression, which is concomitant with a first-order isosymmetric transition and an insulator-to-semimetal transition. The metallization in BiCoO(3) is driven by the spin-state transition at high pressure. Coexistence of the structural, spin-state and insulator-to-semimetal transitions implies that there is a strong coupling among the lattice, spin and charge degrees of freedom in BiCoO(3).

[1]  Philippe Ghosez,et al.  First-principles study of barium titanate under hydrostatic pressure , 2006 .

[2]  R. Cohen,et al.  Pressure induced phase transitions in PbTiO3 , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  R. Scalettar,et al.  Collapse of magnetic moment drives the Mott transition in MnO. , 2008, Nature materials.

[4]  V. Anisimov,et al.  Pressure-driven metal-insulator transition in hematite from dynamical mean-field theory. , 2008, Physical review letters.

[5]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[6]  R. Cohen,et al.  Magnetic Collapse in Transition Metal Oxides at High Pressure: Implications for the Earth , 1997, Science.

[7]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[8]  J. Scott,et al.  Data storage. Multiferroic memories. , 2007, Nature materials.

[9]  Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. , 2005, Physical review letters.

[10]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[11]  J. Íñiguez,et al.  Pressure-induced structural, electronic, and magnetic effects in BiFeO 3 , 2008, 0810.0856.

[12]  W. Pickett,et al.  Pressure-driven magnetic moment collapse in the ground state of MnO , 2007, 0803.3026.

[13]  Nicola A. Spaldin,et al.  Computational design of multifunctional materials , 2003 .

[14]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[15]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[16]  Sergey Ovchinnikov,et al.  Another mechanism for the insulator-metal transition observed in Mott insulators , 2008 .

[17]  A. Sani,et al.  Pressure and Temperature Dependence of the Ferroelectric–Paraelectric Phase Transition in PbTiO3 , 2002 .

[18]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[19]  V. Caignaert,et al.  Thermoelectric power of HoBaCo2O5.5: possible evidence of the spin blockade in cobaltites. , 2004, Physical review letters.

[20]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[21]  Ramamoorthy Ramesh,et al.  Multiferroics and magnetoelectrics: thin films and nanostructures , 2008 .

[22]  Y. Tokura,et al.  Orbital physics in transition-metal oxides , 2000, Science.

[23]  V. Struzhkin,et al.  Spin-crossover-induced Mott transition and the other scenarios of metallization in 3d n metal compounds , 2009 .

[24]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[25]  Sang-Wook Cheong,et al.  Structural phenomena associated with the spin-state transition in LaCoO 3 , 2002, cond-mat/0204636.

[26]  R. Scalettar,et al.  First-order isostructural Mott transition in highly compressed MnO. , 2005, Physical review letters.

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[29]  T. Oguchi,et al.  First-Principles Predictions of Giant Electric Polarization , 2005 .

[30]  Different look at the spin state of Co(3+) ions in a CoO(5) pyramidal coordination. , 2003, Physical review letters.

[31]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[32]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[33]  L. Craco,et al.  Theory of the orbital-selective Mott transition in ferromagnetic YTiO3 under high pressure , 2008 .

[34]  Risto M. Nieminen,et al.  Evidence against the polarization rotation model of piezoelectric perovskites at the morphotropic phase boundary , 2008, 0810.2701.

[35]  H. Fjellvåg,et al.  Magnetic‐Instability‐Induced Giant Magnetoelectric Coupling , 2008 .

[36]  P. Bouvier,et al.  Ferroelectricity of perovskites under pressure. , 2005, Physical review letters.

[37]  Lingling Wang,et al.  First-principles study of structural, electronic, and multiferroic properties in BiCoO3. , 2007, The Journal of chemical physics.

[38]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[39]  M. Hanfland,et al.  Equation of state of BaTiO3 and KNbO3 at room temperature up to 30 GPa , 2002 .