Continuous-variable quantum Gaussian process regression and quantum singular value decomposition of nonsparse low-rank matrices

With the significant advancement in quantum computation in the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speed-up in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of non-sparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.

[1]  Fabio Tozeto Ramos,et al.  A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets , 2009, IJCAI.

[2]  C. Weedbrook,et al.  Quantum Machine Learning over Infinite Dimensions. , 2016, Physical review letters.

[3]  Jonathan P. Dowling Schrödinger's Killer App: Race to Build the World's First Quantum Computer , 2013 .

[4]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[5]  S. Aaronson Read the fine print , 2015, Nature Physics.

[6]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[7]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[8]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  Arthur L. Samuel,et al.  Some studies in machine learning using the game of checkers , 2000, IBM J. Res. Dev..

[11]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[12]  Seth Lloyd,et al.  Quantum singular-value decomposition of nonsparse low-rank matrices , 2016, 1607.05404.

[13]  Joseph Fitzsimons,et al.  Quantum assisted Gaussian process regression , 2015, Physical Review A.

[14]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[15]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[16]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[17]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[18]  Sebastian Thrun,et al.  Towards fully autonomous driving: Systems and algorithms , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[19]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[20]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[21]  George Siopsis,et al.  Repeat-until-success cubic phase gate for universal continuous-variable quantum computation , 2014, 1412.0336.

[22]  Andrew M. Childs,et al.  Exponential improvement in precision for simulating sparse Hamiltonians , 2013, Forum of Mathematics, Sigma.