暂无分享,去创建一个
[1] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[2] A. Winter,et al. Communication cost of entanglement transformations , 2002, quant-ph/0204092.
[3] A. Winter,et al. Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[4] Francesco BuscemiNilanjana Datta. General theory of assisted entanglement distillation , 2010 .
[5] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] Schumacher,et al. Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[8] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[9] M. Berta. Single-shot Quantum State Merging , 2009, 0912.4495.
[10] Graeme Smith,et al. Quantum Communication with Zero-Capacity Channels , 2008, Science.
[11] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[12] Andreas J. Winter,et al. On the Distributed Compression of Quantum Information , 2006, IEEE Transactions on Information Theory.
[13] Igor Devetak,et al. Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.
[14] A. Rényi. On Measures of Entropy and Information , 1961 .
[15] P. Hayden,et al. Universal entanglement transformations without communication , 2003 .
[16] M. Fannes. A continuity property of the entropy density for spin lattice systems , 1973 .
[17] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.
[18] Jafar Ahmadi,et al. Characterizations based on Rényi entropy of order statistics and record values , 2008 .
[19] H. Yuen. Coding theorems of quantum information theory , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[20] M. M. Mayoral,et al. Renyi's Entropy as an Index of Diversity in Simple-Stage Cluster Sampling , 1998, Inf. Sci..
[21] M. Horodecki,et al. Quantum information can be negative , 2005, quant-ph/0505062.
[22] Christian Cachin,et al. Smooth Entropy and Rényi Entropy , 1997, EUROCRYPT.
[23] Andreas J. Winter,et al. Quantum Reverse Shannon Theorem , 2009, ArXiv.
[24] John A. Smolin,et al. Entanglement of assistance and multipartite state distillation , 2005 .
[25] David P. DiVincenzo,et al. Entanglement of Assistance , 1998, QCQC.
[26] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[27] A. Harrow. Entanglement spread and clean resource inequalities , 2009, 0909.1557.
[28] C. Adami,et al. Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.
[29] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[30] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[31] Joseph M. Renes,et al. One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.
[32] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[33] Mario Berta,et al. A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem , 2009, TQC.
[34] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[35] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[36] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[37] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[38] Renato Renner,et al. Simple and Tight Bounds for Information Reconciliation and Privacy Amplification , 2005, ASIACRYPT.
[39] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.