Design and Application of Chattering-Free Sliding Mode Controller to Cable-Driven Parallel Robot Manipulator: Theory and Experiment

High-performance robust controller design for nonlinear uncertain dynamical systems such as cable-driven parallel robot manipulators is a challenging work. In this paper, a new and systematic approach to combine sliding mode control, adaptive control design techniques and PID control for tracking control of cable-driven parallel robot manipulators, in the presence of model uncertainties is presented. In the proposed method, structured (parametric) and unstructured (un-modeled) uncertainties are lumped into one term and one uncertain parameter (term) is considered corresponding to each degrees of freedom of robot manipulator. Therefore, the problem of computation burden and large number of parameters, which are not addressed in the literature, is solved to a large extent. The global uniform ultimate boundedness stability is obtained in the presence of fast time-varying uncertainties. The simulation and experimental results revealed that the proposed method is robust against uncertainties and its simplicity makes the approach attractive for industrial applications.Copyright © 2010 by ASME