Bond Shift Rearrangement of Chloro, Bromo and Iodobullvalene in the solid State and in Solution. A Carbon−13 and Proton NMR Study

The mechanisms of the Cope rearrangement in chloro-, bromo-, and iodobullvalene in solution and in the solid state were investigated by NMR techniques. The dominant species in solution, for all thr...

[1]  H. Zimmermann,et al.  Bond shift tautomerism of bibullvalenyl in solution and in the solid state. A carbon-13 NMR study , 1996 .

[2]  H. Zimmermann,et al.  Reaction pathways in solid-state processes. 1. Carbon-13 NMR and X-ray crystallography of fluorobullvalence , 1996 .

[3]  H. Zimmermann,et al.  Dynamic NMR investigation of the cope rearrangement in solutions of monosubstituted bullvalenes , 1996 .

[4]  H. Zimmermann,et al.  Reaction pathways in solid-state processes. 2. Carbon-13 NMR and X-ray crystallography of cyanobullvalene and bullvalenecarboxylic acid , 1996 .

[5]  A. Olivieri,et al.  Residual Dipolar ( 35,37 CI, 13 C) Coupling in Solid Sodium Chloroacetates. A Combined Variable-Temperature 35 CI NQR and Variable-Field 13 C MAS NMR Study , 1995 .

[6]  K. Harris,et al.  Second-order quadrupolar effects for directly bonded and remote 13C–79/81Br spin pairs in high-resolution 13C NMR spectra of solids , 1995 .

[7]  S. Takeda,et al.  Residual dipolar splittings in 13C CP/MAS NMR spectra due to quadrupolar halogen nuclei in uracil halides , 1994 .

[8]  S. Alexander,et al.  Theory of dynamic magic angle spinning nuclear magnetic resonance and its application to carbon‐13 in solid bullvalene , 1993 .

[9]  R. Harris,et al.  Residual dipolar splittings in, 13C MAS NMR arising from interactions with chlorine nuclei , 1993 .

[10]  A. Olivieri Dipolar and Scalar Coupling in Magic-Angle-Spinning Solid-State NMR Spectra of Spin- {1}/{2} Nuclei Affected by Quadrupolar Nuclei with Large Quadrupole Coupling Constants , 1993 .

[11]  H. Zimmermann,et al.  Cope rearrangement and molecular reorientation in solid bullvalene: a single crystal deuterium NMR study , 1992 .

[12]  H. Spiess,et al.  Solid-state reactions studied by carbon-13 rotor synchronized magic angle spinning two-dimensional exchange NMR. 1. Self-diffusion and the tautomeric hydrogen shift in tropolone , 1992 .

[13]  H. Spiess,et al.  Rotor Synchronized MAS Two-Dimensional Exchange NMR in Solids. Principles and Applications , 1992 .

[14]  A. Olivieri,et al.  Quadrupolar effects transferred to spin-12 magic-angle spinning spectra of solids , 1992 .

[15]  K. Schmidt-Rohr,et al.  Two-Dimensional Nuclear Magnetic Resonance Experiments for Studying Molecular Order and Dynamics in Static and in Rotating Solids , 1989 .

[16]  P. Luger,et al.  X-Ray, n.m.r., and theoretical studies of the structures of (ethylthio)bullvalene , 1989 .

[17]  S. Vega,et al.  NMR line shape analysis for two‐site exchange in rotating solids , 1987 .

[18]  W. S. Veeman,et al.  A 2D-exchange NMR study of very slow molecular motions in crystalline poly(oxymethylene). , 1985 .

[19]  G. Schwinger,et al.  Darstellung und Röntgenstrukturanalyse von Bicyclo‐[4.2.1]non‐3‐en‐2‐on‐Derivaten , 1981 .

[20]  J. Herzfeld,et al.  Sideband intensities in NMR spectra of samples spinning at the magic angle , 1980 .

[21]  J. Gilles,et al.  Comparison of 13C‐ and 1H‐Magnetic Resonance Spectroscopy as Techniques for the Quantitative Investigation of Dynamic Processes. The cope rearrangement in bullvalene , 1974 .

[22]  Herbert Röttele,et al.  Über Moleküle mit fluktuierenden Bindungen, XVIII. Bullvalenyl-magnesiumbromid, Bibullvalenyl, Bullvalencarbonsäure, Methoxycarbonyl- und Methyl-bullvalen† , 1971 .

[23]  J. Nielsen,et al.  Synthesis and spectral properties of bullvalyl thioethers. , 1970 .

[24]  G. Schröder,et al.  Fluor-, chlor- und jodbullvalen , 1968 .

[25]  G. Schröder,et al.  Moleküle mit schneller und reversibler Valenzisomerisierung, VI. Synthesen und Eigenschaften einiger monosubstituierter Bullvalene , 1965 .