Microfabricated bistable module for digital microrobotics

High precision microrobots are needed more and more to perform micro/nanomanipulation and microassembly tasks in various environments like microrobotic stations, electronic microscopes (SEM, TEM), etc. Current microrobots are based on the use of smart materials to perform proportional or incremental actuation. To avoid the main drawbacks of these microrobots (non linearities, integration of sensors, robust control, energy consumption, sensitivity to noise), we propose a new type of microrobots, called digital microrobots, based on microfabricated bistable modules. The study presented in this paper is dedicated to the microfabricated bistable modules, notably the structure and the actuators design and characterization. The results open a new paradigm in the field of microrobotics leading to open loop control and the design of various kinematics adapted to the microworld. Moreover, no external energy is required to maintain the microrobot in its position.

[1]  Harold G. Craighead,et al.  The pull-in behavior of electrostatically actuated bistable microstructures , 2008 .

[2]  Philippe Lutz,et al.  Voltage/Frequency Proportional Control of Stick-Slip Micropositioning Systems , 2008, IEEE Transactions on Control Systems Technology.

[3]  J. Lang,et al.  A curved-beam bistable mechanism , 2004, Journal of Microelectromechanical Systems.

[4]  Gregory S. Chirikjian,et al.  An efficient method for computing the forward kinematics of binary manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[5]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[6]  P. C. Hughes,et al.  Trussarm—A Variable-Geometry-Truss Manipulator , 1991 .

[7]  Michaël Gauthier,et al.  Principle of a Submerged Freeze Gripper for Microassembly , 2008, IEEE Transactions on Robotics.

[8]  P. Lutz,et al.  Development, Modeling, and Control of a Micro-/Nanopositioning 2-DOF Stick–Slip Device , 2009, IEEE/ASME Transactions on Mechatronics.

[9]  Philippe Lutz,et al.  Quadrilateral Modelling and Robust Control of a Nonlinear Piezoelectric Cantilever , 2009, IEEE Transactions on Control Systems Technology.

[10]  Gregory S. Chirikjian,et al.  A combinatorial approach to trajectory planning for binary manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  G. K. Ananthasuresh,et al.  The Effect of Thermal Boundary Conditions and Scaling on Electro-Thermal-Compliant Micro Devices , 2000 .

[12]  Il-Han Hwang,et al.  Modeling and experimental characterization of the chevron-type bi-stable microactuator , 2003 .

[13]  Gregory S. Chirikjian,et al.  A binary paradigm for robotic manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[14]  Hiroshi Furuya,et al.  Variable geometry truss and its application to deployable truss and space crane arm , 1985 .

[15]  Troy Gomm Development of In-Plane Compliant Bistable Microrelays , 2003 .

[16]  Cheng-Kuo Sung,et al.  Design and experiments of fully compliant bistable micromechanisms , 2005 .

[17]  Philippe Lutz,et al.  Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Yan Gao,et al.  Locomotive gait generation for inchworm-like robots using finite state approach , 2001, Robotica.

[19]  Hong Wang,et al.  Design and fabrication of a magnetic bi-stable electromagnetic MEMS relay , 2007, Microelectron. J..

[20]  Gregory S. Chirikjian,et al.  Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[21]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[22]  Ulrich Mescheder,et al.  Simulation and realization of a novel micromechanical bi-stable switch , 2004 .

[23]  Steven Dubowsky,et al.  Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator , 2004 .

[24]  Brian D. Jensen,et al.  Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior , 2003 .

[25]  Gregory S. Chirikjian,et al.  Inverse kinematics of binary manipulators with applications to service robotics , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[26]  Ho Nam Kwon,et al.  A pulse-operating electrostatic microactuator for bi-stable latching , 2005 .

[27]  Thomas G. Bifano,et al.  Development of a MEMS microvalve array for fluid flow control , 1998 .

[28]  Kristofer S. J. Pister,et al.  Mechanical Digital-To-Analog Converters , 2002 .

[29]  Philippe Lutz,et al.  IMPROVEMENT OF STRAIN GAUGES MICRO-FORCES MEASUREMENT USING KALMAN OPTIMAL FILTERING , 2009 .

[30]  Yong Mo Moon,et al.  DESIGN OF LARGE-DISPLACEMENT COMPLIANT JOINTS , 2005 .

[31]  M. Baker On-Chip Actuation of Compliant Bistable Micro-Mechanisms , 2003 .

[32]  Moshe Shoham,et al.  A Novel Six Degrees-of-Freedom Parallel Robot for MEMS Fabrication , 2007, IEEE Transactions on Robotics.