Review—Metallic Lithium and the Reduction of Actinide Oxides

[1]  G. Kokkinidis Underpotential deposition and electrocatalysis , 1986 .

[2]  A. Dworkin,et al.  MISCIBILITY OF METALS WITH SALTS. VI. LITHIUM-LITHIUM HALIDE SYSTEMS1 , 1962 .

[3]  Ronald A. Guidotti,et al.  Thermal activated (thermal) battery technology: Part II. Molten salt electrolytes , 2008 .

[4]  H. Gerischer,et al.  Further aspects concerning the correlation between underpotential deposition and work function differences , 1975 .

[5]  E. Choi,et al.  Electrochemical reduction of UO2 in LiCl–Li2O molten salt using porous and nonporous anode shrouds , 2014 .

[6]  Han-Soo Lee,et al.  Preliminary conceptual design and cost estimation for Korea Advanced Pyroprocessing Facility Plus (KAPF , 2014 .

[7]  V. Cherginets Oxide ion electrodes and oxide ion donors in molten alkaline halogenides. A consideration of potentiometric studies , 1997 .

[8]  M. Kurata,et al.  Electro-chemical reduction of MOX in LiCl , 2004 .

[9]  Eric J. Karell,et al.  Separation of Actinides from LWR Spent Fuel Using Molten-Salt-Based Electrochemical Processes , 2001 .

[10]  J. Poignet,et al.  Measurement of the activity of lithium in dilute solutions in molten lithium chloride between 650°C and 800°C , 1990 .

[11]  Tadashi Inoue,et al.  Application of Electrochemical Reduction to Produce Metal Fuel Material from Actinide Oxides , 2008 .

[12]  H. Moriyama,et al.  Solubility of molten salt into liquid lithium , 1994 .

[13]  J. Hur,et al.  Silicon powder production by electrochemical reduction of SiO2 in molten LiCl–Li2O , 2008 .

[14]  J. E. Battles,et al.  Electrorefining of uranium and plutonium - A literature review , 1992 .

[15]  G. Haarberg,et al.  Electrochemical properties of metal-molten salt mixtures , 1989 .

[16]  H. Bronstein,et al.  The Electrical Conductivity of Solutions of Alkali Metals in their Molten Halides1 , 1958 .

[17]  Jin-Mok Hur,et al.  An Electrochemical Reduction of Uranium Oxide in the Advanced Spent-Fuel Conditioning Process , 2008 .

[18]  Jin-Mok Hur,et al.  Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt , 2012 .

[19]  Tadashi Inoue,et al.  Electrochemical reduction of (U–40Pu–5Np)O2 in molten LiCl electrolyte , 2006 .

[20]  Seong-Won Park,et al.  Metallization of U3O8via catalytic electrochemical reduction with Li2O in LiCl molten salt , 2003 .

[21]  Y. Sakamura,et al.  Electrolytic Reduction and Electrorefining of Uranium to Develop Pyrochemical Reprocessing of Oxide Fuels , 2010 .

[22]  M. Kurata,et al.  Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal , 2002 .

[23]  Jin-Mok Hur,et al.  Preparation and melting of uranium from U3O8 , 2008 .

[24]  Jin-Mok Hur,et al.  Stability of yttria-stabilized zirconia during pyroprocessing tests , 2016 .

[25]  Han-Soo Lee,et al.  Electrochemical reduction behavior of U3O8 powder in a LiCl molten salt , 2010 .

[26]  C. Wu,et al.  Thermochemical properties of gaseous Li3O and Li2O2 , 1976 .

[27]  Myung Seung Yang,et al.  Fractional Release Behavior of Volatile and Semivolatile Fission Products During a Voloxidation and OREOX Treatment of Spent PWR Fuel , 2008 .

[28]  E. Choi,et al.  Effect of the Anode-to-Cathode Distance on the Electrochemical Reduction in a LiCl-Li2O Molten Salt , 2013 .

[29]  Lothar Koch,et al.  DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION , 2008 .

[30]  E. Choi,et al.  Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt , 2016 .

[31]  H. Bronstein,et al.  MISCIBILITY OF LIQUID METALS WITH SALTS. IV. THE SODIUM—SODIUM HALIDE SYSTEMS AT HIGH TEMPERATURES1 , 1960 .

[32]  E. Choi,et al.  Use of a single fuel containment material during pyroprocessing tests , 2015 .

[33]  Perry N. Motsegood,et al.  Presence of Li Clusters in Molten LiCl-Li , 2016, Scientific Reports.

[34]  I. Yaffe,et al.  Electrical Conductance and Density of Molten Salt Systems: KCl–LiCl, KCl–NaCl and KCl–KI , 1955 .

[35]  S. Jeong,et al.  Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-Li2O molten salt , 2008 .

[36]  Y. Sakamura Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO2 in LiCl salt bath , 2011 .

[37]  E. Choi,et al.  Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[38]  Michael F. Simpson,et al.  Electrolytic Reduction of Spent Light Water Reactor Fuel Bench-Scale Experiment Results , 2007 .

[39]  R. O. Jones,et al.  Density functional study of structure and bonding in lithium clusters Lin and their oxides LinO , 1997 .

[40]  B. Hallstedt,et al.  Thermodynamic assessment of the Li–O system , 2011 .

[41]  G. Picard,et al.  Computational investigations of the liquid lithium/(LiCl-KCl eutectic melt) interface , 1998 .

[42]  Shelly X. Li,et al.  Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Products , 2006 .

[43]  Seong-Won Park,et al.  Electrolytic reduction of spent oxide fuel in a molten LiCl-Li2O system , 2006 .

[44]  M. Blander Molten salt chemistry , 1964 .

[45]  Michael F. Simpson,et al.  Diffusion Model for Electrolytic Reduction of Uranium Oxides in a Molten LiCl-Li2O Salt , 2011 .

[46]  J. J. Laidler,et al.  Development of pyroprocessing technology , 1997 .

[47]  HurJin-Mok,et al.  Electrochemical Reduction of TiO2 in Molten LiCl–Li2O , 2007 .

[48]  E. Choi,et al.  Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio , 2011 .

[49]  G. Chen,et al.  Electrochemical investigation of lithium intercalation into graphite from molten lithium chloride , 2002 .

[50]  Augustus Merwin,et al.  Alternate Anodes for the Electrolytic Reduction of UO2 , 2014, Metallurgical and Materials Transactions A.

[51]  W. Warren Metal-Metal Salt Solutions , 1987 .

[52]  J. Poignet,et al.  Electronic conductivity of salt-rich Li−LiCl melts , 1992 .

[53]  Jin-Mok Hur,et al.  Electrochemical behavior of a platinum anode for reduction of uranium oxide in a LiCl molten salt , 2009 .

[54]  Y. Sakamura Solubility of Li[sub 2]O in Molten LiCl–MCl[sub x] (M=Na, K, Cs, Ca, Sr, or Ba) Binary Systems , 2010 .

[55]  M. Kurata,et al.  Lithium reduction of americium dioxide to generate americium metal , 2002 .

[56]  E. Choi,et al.  Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology , 2015 .

[57]  E. Janssens,et al.  Visible and near-infrared photoabsorption spectrum of Li3O: Resonance enhanced two-photon ionization spectroscopy and ab initio calculations , 2003 .

[58]  J. V. Ortiz,et al.  Interpretation of the photoelectron spectra of superalkali species: Li3O and Li3O-. , 2011, The Journal of chemical physics.

[59]  Hansoo Lee,et al.  Electrochemical reduction of UO2 to U in a LiCl–KCl-Li2O molten salt , 2013, Journal of Radioanalytical and Nuclear Chemistry.

[60]  Wei Xiao,et al.  The electrochemical reduction processes of solid compounds in high temperature molten salts. , 2014, Chemical Society reviews.

[61]  A. Dworkin,et al.  Miscibility of liquid metals with salts. VIII. Strontium-strontium halide and barium-barium halide systems , 1968 .

[62]  E. Choi,et al.  Application of a boron doped diamond (BDD) electrode as an anode for the electrolytic reduction of UO2 in Li2O–LiCl–KCl molten salt , 2013 .

[63]  Jin-Mok Hur,et al.  Chemical Stability of Conductive Ceramic Anodes in LiCl–Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing , 2016 .

[64]  Michael F. Simpson,et al.  Modeling the Pyrochemical Reduction of Spent UO2 Fuel in a Pilot-Scale Reactor , 2006 .

[65]  K. Mohandas,et al.  A cyclic voltammetry study of the electrochemical behavior of platinum in oxide-ion rich LiCl melts , 2014 .

[66]  K. Nakanishi,et al.  Miscibility of Lithium with Lithium Chloride and Lithium Chloride–Potassium Chloride Eutectic Mixture , 1974 .

[67]  Jin-Mok Hur,et al.  TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing , 2015 .

[68]  B. Westphal,et al.  Effect of Process Variables During the Head-End Treatment of Spent Oxide Fuel , 2006 .

[69]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[70]  J. Evans,et al.  A shrinking core model for the electro-deoxidation of metal oxides in molten halide salts , 2008 .

[71]  Shelly X. Li,et al.  Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining , 2010 .

[72]  Milin Zhang,et al.  Electrochemical formation of Mg-Li-Y alloys by co-deposition of magnesium, lithium and yttrium ions in molten chlorides , 2012 .

[73]  J. L. Ballif,et al.  Lithium literature review: lithium's properties and interactions , 1978 .

[74]  Masatoshi Iizuka,et al.  Applicability of nickel ferrite anode to electrolytic reduction of metal oxides in LiCl-Li2O melt at 923 K , 2016 .

[75]  L. Grantham,et al.  Electrical Conductivities of Molten Bi–BiI3 Solutions , 1963 .

[76]  Jin-Mok Hur,et al.  A conductive oxide as an O2 evolution anode for the electrolytic reduction of metal oxides , 2015 .

[77]  Jin-Mok Hur,et al.  Effect of the UO2 form on the electrochemical reduction rate in a LiCl–Li2O molten salt , 2013 .

[78]  Hansoo Lee,et al.  An Experimental Study on an Electrochemical Reduction of an Oxide Mixture in the Advanced Spent-Fuel Conditioning Process , 2010 .

[79]  K. Yokoyama,et al.  The Structures and Bonding of Hyperlithiated Molecules , 1996 .

[80]  Electrochemical investigations of the liquid lithium/(LiCl–KCl eutectic melt) interface. Chronopotentiometric and electrochemical impedance spectroscopy measurements , 1998 .

[81]  Jun-Gill Kang,et al.  Application of a chronoamperometric measurement to the on-line monitoring of a lithium metal reduction for uranium oxide , 2008 .

[82]  S. Jeong,et al.  Electrolytic production of metallic uranium from U3O8 in a 20-kg batch scale reactor , 2006 .

[83]  Han-Soo Lee,et al.  Underpotential deposition of Li in a molten LiCl–Li2O electrolyte for the electrochemical reduction of U from uranium oxides , 2010 .

[84]  I. Lee,et al.  Electrolytic reduction behavior of U3O8 in a molten LiCl–Li2O salt , 2008 .

[85]  D. Fray,et al.  DC voltammetry of electro-deoxidation of solid oxides. , 2013, Chemical reviews.

[86]  O. A. Oviedo,et al.  Underpotential deposition: From planar surfaces to nanoparticles , 2015 .

[87]  J. Evans,et al.  A model for the electrochemical reduction of metal oxides in molten salt electrolytes , 2008 .

[88]  H. Gerischer,et al.  Underpotential deposition of metals and work function differences , 1974 .

[89]  Hansoo Lee,et al.  Oxide electroreduction and other processes for pyrochemical processing of spent nuclear fuels: Developments in Korea , 2015 .

[90]  K. Mohandas Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis: a review , 2013 .