Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach

In this paper, we present and illustrate a general methodology to apply KAM theory in particular problems, based on an a posteriori approach. We focus on the existence of real analytic quasi-periodic Lagrangian invariant tori for symplectic maps. The purpose is to verify the hypotheses of a KAM theorem in an a posteriori format: Given a parameterization of an approximately invariant torus, we have to check non-resonance (Diophantine) conditions, non-degeneracy conditions and certain inequalities to hold. To check such inequalities, we require to control the analytic norm of some functions that depend on the map, the ambient structure and the parameterization. To this end, we propose an efficient computer-assisted methodology, using fast Fourier transform, having the same asymptotic cost of using the parameterization method for obtaining numerical approximations of invariant tori. We illustrate our methodology by proving the existence of invariant curves for the standard map (up to $$\varepsilon =0.9716$$ε=0.9716), meandering curves for the non-twist standard map and 2-dimensional tori for the Froeschlé map.

[1]  A. Kolmogorov,et al.  Preservation of conditionally periodic movements with small change in the Hamilton function , 1979 .

[2]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[3]  Stathis Tompaidis,et al.  Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..

[4]  Jürgen Moser,et al.  A rapidly convergent iteration method and non-linear differential equations = II , 1966 .

[5]  Fabrice Rouillier,et al.  Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library , 2005, Reliab. Comput..

[6]  R. Llave,et al.  Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.

[7]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[8]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[9]  R. de la Llave,et al.  Accurate strategies for small divisor problems , 1990 .

[10]  C. Froeschlé,et al.  Numerical study of a four-dimensional mapping , 1973 .

[11]  C. Froeschlé,et al.  Numerical Study of a Four-Dimensional Mapping. II. , 1973 .

[12]  A. Celletti,et al.  On the Stability of Realistic Three-Body Problems , 1997 .

[13]  A. Giorgilli,et al.  Invariant Tori in the Secular Motions of the Three-body Planetary Systems , 2000 .

[14]  P. Strevens Iii , 1985 .

[15]  C. Fefferman,et al.  Finite time singularities for the free boundary incompressible Euler equations , 2011, 1112.2170.

[16]  Jordi-Lluís Figueras,et al.  Reliable Computation of Robust Response Tori on the Verge of Breakdown , 2012, SIAM J. Appl. Dyn. Syst..

[17]  J. Mondelo,et al.  The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .

[18]  Rafael de la Llave,et al.  KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..

[19]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[20]  H. Rüssmann On a new proof of Moser's twist mapping theorem , 1976 .

[21]  P. Morrison,et al.  Area preserving nontwist maps: periodic orbits and transition to chaos , 1996 .

[22]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[23]  G. Gallavotti Perturbation Theory for Classical Hamiltonian Systems , 1983 .

[24]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[25]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[26]  H. Rüssmann On optimal estimates for the solutions of linear difference equations on the circle , 1976 .

[27]  Rafael de la Llave,et al.  A Tutorial on Kam Theory , 2003 .

[28]  A. Neishtadt Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .

[29]  Gregory T. Minton Computer-assisted proofs in geometry and physics , 2013 .

[30]  A. Celletti,et al.  On the break-down threshold of invariant tori in four dimensional maps , 2004 .

[31]  R. Llave,et al.  Singularity Theory for Non-Twist Kam Tori , 2014 .

[32]  Marta Canadell,et al.  A Newton-like Method for Computing Normally Hyperbolic Invariant Tori , 2016 .

[33]  R. Llave,et al.  Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations , 2011 .

[34]  Luigi Chierchia,et al.  A Constructive Theory of Lagrangian Tori and Computer-assisted Applications , 1995 .

[35]  Arturo Olvera,et al.  Regularity Properties of Critical Invariant Circles of Twist Maps, and Their Universality , 2006, SIAM J. Appl. Dyn. Syst..

[36]  Jordi Villanueva A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems , 2017, J. Nonlinear Sci..

[37]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[38]  Charles L. Epstein,et al.  How well does the finite Fourier transform approximate the Fourier transform? , 2005 .

[39]  W. Tucker The Lorenz attractor exists , 1999 .

[40]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[41]  J. Mondelo,et al.  The parameterization method for invariant manifolds , 2016 .

[42]  J. Stark,et al.  Converse KAM theory for symplectic twist maps , 1989 .

[43]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[44]  Luigi Chierchia,et al.  Construction of analytic KAM surfaces and effective stability bounds , 1988 .

[45]  Marta Canadell,et al.  Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori , 2014 .

[46]  Luigi Chierchia,et al.  KAM stability and celestial mechanics , 2007 .

[47]  J. Bost Tores invariants des systèmes dynamiques hamiltoniens , 1985 .

[48]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[49]  J. Villanueva Kolmogorov Theorem revisited , 2008 .

[50]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[51]  R. Llave,et al.  Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.

[52]  Irwin Jungreis,et al.  A method for proving that monotone twist maps have no invariant circles , 1991, Ergodic Theory and Dynamical Systems.

[53]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[54]  R. Llave,et al.  A KAM theory for conformally symplectic systems: Efficient algorithms and their validation , 2013 .

[55]  J. Villanueva,et al.  A KAM theorem without action-angle variables for elliptic lower dimensional tori , 2011 .

[56]  G. Benettin,et al.  A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method , 1984 .

[57]  Eduard Zehnder,et al.  KAM theory in configuration space , 1989 .

[58]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .

[59]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[60]  Rafael de la Llave,et al.  A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .

[61]  U. Locatelli Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian , 1998 .

[62]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..

[63]  Peter Wittwer,et al.  Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..

[64]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[65]  Helmut Rüssmann,et al.  On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .

[66]  J. Villanueva,et al.  A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map , 2016 .

[67]  Jordi-Lluís Figueras,et al.  Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.

[68]  Charles Fefferman,et al.  Interval Arithmetic in Quantum Mechanics , 1996 .

[69]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[70]  J. Hass,et al.  Double bubbles minimize , 2000, math/0003157.

[71]  B. Fayad,et al.  Around the stability of KAM tori , 2013, 1311.7334.

[72]  R. Llave,et al.  Lindstedt series for lower dimensional tori , 1999 .

[73]  C. Simó Invariant curves of analytic perturbed nontwist area preserving maps , 1998 .

[74]  James D. Meiss,et al.  Critical invariant circles in asymmetric and multiharmonic generalized standard maps , 2013, Commun. Nonlinear Sci. Numer. Simul..

[75]  J. Wehr,et al.  Computer-assisted proofs for fixed point problems in Sobolev spaces , 2000 .

[76]  G. Glauberman Proof of Theorem A , 1977 .

[77]  Warwick Tucker,et al.  Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[78]  A. Giorgilli,et al.  Superexponential stability of KAM tori , 1995 .

[79]  Arnold diffusion, ergodicity and intermittency in a coupled standard mapping , 1985 .

[80]  J. Villanueva,et al.  Numerical computation of rotation numbers of quasi-periodic planar curves , 2009 .

[81]  R. de la Llave,et al.  Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .

[82]  J. Moser On the Theory of Quasiperiodic Motions , 1966 .

[83]  À. Haro The primitive function of an exact symplectomorphism , 2000 .

[84]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .