Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach
暂无分享,去创建一个
[1] A. Kolmogorov,et al. Preservation of conditionally periodic movements with small change in the Hamilton function , 1979 .
[2] Robert S. MacKay,et al. Renormalisation in Area-Preserving Maps , 1993 .
[3] Stathis Tompaidis,et al. Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..
[4] Jürgen Moser,et al. A rapidly convergent iteration method and non-linear differential equations = II , 1966 .
[5] Fabrice Rouillier,et al. Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library , 2005, Reliab. Comput..
[6] R. Llave,et al. Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.
[7] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[8] Jürgen Moser,et al. Convergent series expansions for quasi-periodic motions , 1967 .
[9] R. de la Llave,et al. Accurate strategies for small divisor problems , 1990 .
[10] C. Froeschlé,et al. Numerical study of a four-dimensional mapping , 1973 .
[11] C. Froeschlé,et al. Numerical Study of a Four-Dimensional Mapping. II. , 1973 .
[12] A. Celletti,et al. On the Stability of Realistic Three-Body Problems , 1997 .
[13] A. Giorgilli,et al. Invariant Tori in the Secular Motions of the Three-body Planetary Systems , 2000 .
[14] P. Strevens. Iii , 1985 .
[15] C. Fefferman,et al. Finite time singularities for the free boundary incompressible Euler equations , 2011, 1112.2170.
[16] Jordi-Lluís Figueras,et al. Reliable Computation of Robust Response Tori on the Verge of Breakdown , 2012, SIAM J. Appl. Dyn. Syst..
[17] J. Mondelo,et al. The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .
[18] Rafael de la Llave,et al. KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..
[19] R. Llave,et al. KAM theory without action-angle variables , 2005 .
[20] H. Rüssmann. On a new proof of Moser's twist mapping theorem , 1976 .
[21] P. Morrison,et al. Area preserving nontwist maps: periodic orbits and transition to chaos , 1996 .
[22] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[23] G. Gallavotti. Perturbation Theory for Classical Hamiltonian Systems , 1983 .
[24] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[25] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[26] H. Rüssmann. On optimal estimates for the solutions of linear difference equations on the circle , 1976 .
[27] Rafael de la Llave,et al. A Tutorial on Kam Theory , 2003 .
[28] A. Neishtadt. Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .
[29] Gregory T. Minton. Computer-assisted proofs in geometry and physics , 2013 .
[30] A. Celletti,et al. On the break-down threshold of invariant tori in four dimensional maps , 2004 .
[31] R. Llave,et al. Singularity Theory for Non-Twist Kam Tori , 2014 .
[32] Marta Canadell,et al. A Newton-like Method for Computing Normally Hyperbolic Invariant Tori , 2016 .
[33] R. Llave,et al. Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations , 2011 .
[34] Luigi Chierchia,et al. A Constructive Theory of Lagrangian Tori and Computer-assisted Applications , 1995 .
[35] Arturo Olvera,et al. Regularity Properties of Critical Invariant Circles of Twist Maps, and Their Universality , 2006, SIAM J. Appl. Dyn. Syst..
[36] Jordi Villanueva. A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems , 2017, J. Nonlinear Sci..
[37] M. R. Herman,et al. Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .
[38] Charles L. Epstein,et al. How well does the finite Fourier transform approximate the Fourier transform? , 2005 .
[39] W. Tucker. The Lorenz attractor exists , 1999 .
[40] I. C. Percival,et al. Converse KAM: Theory and practice , 1985 .
[41] J. Mondelo,et al. The parameterization method for invariant manifolds , 2016 .
[42] J. Stark,et al. Converse KAM theory for symplectic twist maps , 1989 .
[43] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[44] Luigi Chierchia,et al. Construction of analytic KAM surfaces and effective stability bounds , 1988 .
[45] Marta Canadell,et al. Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori , 2014 .
[46] Luigi Chierchia,et al. KAM stability and celestial mechanics , 2007 .
[47] J. Bost. Tores invariants des systèmes dynamiques hamiltoniens , 1985 .
[48] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[49] J. Villanueva. Kolmogorov Theorem revisited , 2008 .
[50] J. Mather. Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.
[51] R. Llave,et al. Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.
[52] Irwin Jungreis,et al. A method for proving that monotone twist maps have no invariant circles , 1991, Ergodic Theory and Dynamical Systems.
[53] George Huitema,et al. Quasi-periodic motions in families of dynamical systems , 1996 .
[54] R. Llave,et al. A KAM theory for conformally symplectic systems: Efficient algorithms and their validation , 2013 .
[55] J. Villanueva,et al. A KAM theorem without action-angle variables for elliptic lower dimensional tori , 2011 .
[56] G. Benettin,et al. A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method , 1984 .
[57] Eduard Zehnder,et al. KAM theory in configuration space , 1989 .
[58] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[59] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[60] Rafael de la Llave,et al. A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .
[61] U. Locatelli. Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian , 1998 .
[62] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..
[63] Peter Wittwer,et al. Computer-Assisted Proofs in Analysis and Programming in Logic: A case Study , 1996, SIAM Rev..
[64] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[65] Helmut Rüssmann,et al. On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .
[66] J. Villanueva,et al. A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map , 2016 .
[67] Jordi-Lluís Figueras,et al. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.
[68] Charles Fefferman,et al. Interval Arithmetic in Quantum Mechanics , 1996 .
[69] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[70] J. Hass,et al. Double bubbles minimize , 2000, math/0003157.
[71] B. Fayad,et al. Around the stability of KAM tori , 2013, 1311.7334.
[72] R. Llave,et al. Lindstedt series for lower dimensional tori , 1999 .
[73] C. Simó. Invariant curves of analytic perturbed nontwist area preserving maps , 1998 .
[74] James D. Meiss,et al. Critical invariant circles in asymmetric and multiharmonic generalized standard maps , 2013, Commun. Nonlinear Sci. Numer. Simul..
[75] J. Wehr,et al. Computer-assisted proofs for fixed point problems in Sobolev spaces , 2000 .
[76] G. Glauberman. Proof of Theorem A , 1977 .
[77] Warwick Tucker,et al. Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .
[78] A. Giorgilli,et al. Superexponential stability of KAM tori , 1995 .
[79] Arnold diffusion, ergodicity and intermittency in a coupled standard mapping , 1985 .
[80] J. Villanueva,et al. Numerical computation of rotation numbers of quasi-periodic planar curves , 2009 .
[81] R. de la Llave,et al. Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .
[82] J. Moser. On the Theory of Quasiperiodic Motions , 1966 .
[83] À. Haro. The primitive function of an exact symplectomorphism , 2000 .
[84] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .