Deep Crustal Communities of the Juan de Fuca Ridge Are Governed by Mineralogy

ABSTRACT Volcanic ocean crust contains a global chemosynthetic microbial ecosystem that impacts ocean productivity, seawater chemistry and geochemical cycling. We examined the mineralogical effect on community structure in the aquifer ecosystem by using a four-year in situ colonization experiment with igneous minerals and glasses in Integrated Ocean Drilling Program Hole 1301A on the Juan de Fuca Ridge. Microbial community analysis and scanning electron microscopy revealed that olivine phases and iron-bearing minerals bore communities that were distinct from iron-poor phases. Communities were dominated by Archaeoglobaceae, Clostridia, Thermosipho, Desulforudis and OP1 lineages. Our results suggest that mineralogy determines microbial composition in the subseafloor aquifer ecosystem.

[1]  Sean P. Jungbluth,et al.  Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust , 2015, Front. Microbiol..

[2]  Paul Turner,et al.  Reagent and laboratory contamination can critically impact sequence-based microbiome analyses , 2014, BMC Biology.

[3]  Samuel T. Wilson,et al.  Dissolved hydrogen and methane in the oceanic basaltic biosphere , 2014 .

[4]  M. Long,et al.  Optimization of thermophilic fermentative hydrogen production by the newly isolated Caloranaerobacter azorensis H53214 from deep-sea hydrothermal vent environment , 2014 .

[5]  J. Cowen,et al.  Phylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank , 2014, Front. Microbiol..

[6]  A. Murat Eren,et al.  VAMPS: a website for visualization and analysis of microbial population structures , 2014, BMC Bioinformatics.

[7]  D. Lovley,et al.  Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii , 2013, Microbial Cell Factories.

[8]  E. Ellison,et al.  Hydrogen generation from low-temperature water-rock reactions , 2013 .

[9]  P. Girguis,et al.  Low Temperature Geomicrobiology Follows Host Rock Composition Along a Geochemical Gradient in Lau Basin , 2013, Front. Microbiol..

[10]  Fumio Inagaki,et al.  Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt , 2013, Science.

[11]  Ryan A. Lesniewski,et al.  Mineralogy Drives Bacterial Biogeography of Hydrothermally Inactive Seafloor Sulfide Deposits , 2013 .

[12]  H. Morrison,et al.  Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland , 2012, The ISME Journal.

[13]  J. Amend,et al.  Energy yields from chemolithotrophic metabolisms in igneous basement of the Juan de Fuca ridge flank system , 2013 .

[14]  H. Orozco,et al.  Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking , 2013, Microbial Cell Factories.

[15]  J. Cowen,et al.  Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank , 2012, The ISME Journal.

[16]  M. Lilley,et al.  Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks , 2012 .

[17]  Eric Smith,et al.  The Emergence and Early Evolution of Biological Carbon-Fixation , 2012, PLoS Comput. Biol..

[18]  E. Bonch‐Osmolovskaya,et al.  Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). , 2012, International journal of systematic and evolutionary microbiology.

[19]  M. Hattori,et al.  A Deeply Branching Thermophilic Bacterium with an Ancient Acetyl-CoA Pathway Dominates a Subsurface Ecosystem , 2012, PloS one.

[20]  W. Brazelton,et al.  Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities , 2012, Front. Microbio..

[21]  C. G. Wheat,et al.  Under the sea: microbial life in volcanic oceanic crust , 2011, Nature Reviews Microbiology.

[22]  Lynne A. Goodwin,et al.  Complete genome sequence of Ferroglobus placidus AEDII12DO , 2011, Standards in genomic sciences.

[23]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[24]  Anna-Louise Reysenbach,et al.  Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. , 2011, Environmental microbiology.

[25]  C. G. Wheat,et al.  In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow‐through device , 2011 .

[26]  C. G. Wheat,et al.  Colonization of subsurface microbial observatories deployed in young ocean crust , 2009, The ISME Journal.

[27]  Ian M. Voparil,et al.  Chemosynthetic origin of 14 C-depleted dissolved organic matter in a ridge-flank hydrothermal system , 2011 .

[28]  Martin Rosner,et al.  First Investigation of the Microbiology of the Deepest Layer of Ocean Crust , 2010, PloS one.

[29]  M. Fisk,et al.  Extent of the microbial biosphere in the oceanic crust , 2010 .

[30]  M. Fisk,et al.  Surface area measurements of marine basalts: Implications for the subseafloor microbial biomass , 2010 .

[31]  C. G. Wheat,et al.  Subseafloor seawater‐basalt‐microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment , 2010 .

[32]  K. Edwards,et al.  Bacterial and Archaeal DNA Extracted from Inoculated Experiments: Implication for the Optimization of DNA Extraction from Deep-Sea Basalts , 2009 .

[33]  S. Ragsdale,et al.  Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. , 2008, Biochimica et biophysica acta.

[34]  Susan M. Huse,et al.  Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing , 2008, PLoS genetics.

[35]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[36]  J. Lupton,et al.  Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin , 2008 .

[37]  M. Sogin,et al.  Abundance and diversity of microbial life in ocean crust , 2008, Nature.

[38]  T. McCollom Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. , 2007, Astrobiology.

[39]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[40]  R. M. Lehman,et al.  Understanding of Aquifer Microbiology is Tightly Linked to Sampling Approaches , 2007 .

[41]  C. G. Wheat,et al.  Microbial Community in Black Rust Exposed to Hot Ridge Flank Crustal Fluids , 2006, Applied and Environmental Microbiology.

[42]  M. Lilley,et al.  Dissolved Organic Carbon in Ridge-Axis and Ridge-Flank Hydrothermal Systems , 2006 .

[43]  W. Whitman,et al.  Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. , 2006, Extremophiles.

[44]  H. Johnson,et al.  Microbial life in ridge flank crustal fluids. , 2006, Environmental microbiology.

[45]  C. G. Wheat,et al.  Scientific and technical design and deployment of long-term subseafloor observatories for hydrogeologic and related experiments, IODP Expedition 301, eastern flank of Juan de Fuca Ridge , 2005 .

[46]  K. Edwards,et al.  Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. , 2005, Trends in microbiology.

[47]  H. Johnson,et al.  Fluxes of fluid and heat from the oceanic crustal reservoir , 2003 .

[48]  H. Schouten,et al.  An ultraslow-spreading class of ocean ridge , 2003, Nature.

[49]  Fabien Kenig,et al.  Fluids from Aging Ocean Crust That Support Microbial Life , 2003, Science.

[50]  Y. Kamagata,et al.  Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. , 2002, International journal of systematic and evolutionary microbiology.

[51]  S. Giovannoni,et al.  Cultivation of the ubiquitous SAR11 marine bacterioplankton clade , 2002, Nature.

[52]  D. Lovley,et al.  Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. , 2002, International journal of systematic and evolutionary microbiology.

[53]  C R Woese,et al.  Erratum: The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1998, Nature.

[54]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.