A renaissance of color: New structures and building blocks for organic electronics

Natural dyes and pigments like indigo and its derivatives valued for their bright colors and photochemical stability has been used since antiquity. Recently, the need for better performing materials in the organic electronics field has inspired a resurgence of these historical molecules and their subsequent transformation into new families of π-conjugated building blocks used to construct new (macro)molecular semiconductors. This Highlight will explore the renaissance of notable building blocks including diketopyrrolopyrrole, (iso)indigo, benzodipyrrolidone, and benzodifuranone, as well as nonfullerene acceptor structures 9,9′-bifluorenylidene and quinacridone. In addition, as the organic electronics field continues to evolve, the design of molecules with precise structure and function embodies a new paradigm for the next generation of materials. Representative examples will be described that embrace this new model and point the direction for advanced technologies. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

[1]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[2]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[3]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[4]  H. Liebermann Über die Bildung von Chinakridonen aus p‐Di‐arylamino‐terephtalsäuren. 6. Mitteilung über Umwandlungsprodukte des Succinylobernsteinsäureesters , 1935 .

[5]  M. Toney,et al.  Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. , 2012, Journal of the American Chemical Society.

[6]  K. Hashimoto,et al.  Efficient charge generation and collection in organic solar cells based on low band gap dyad molecules. , 2011, Chemical communications.

[7]  Jianguo Mei,et al.  Synthesis of isoindigo-based oligothiophenes for molecular bulk heterojunction solar cells. , 2010, Organic letters.

[8]  F. Wudl,et al.  Benzodipyrrolidones and Their Polymers , 2011 .

[9]  Goverdhan Mehta,et al.  Attempted reformatskii reaction of benzonitrile, 1,4-diketo-3,6-diphenylpyrrolo[3,4-C]pyrrole. A lactam analogue of pentalene. , 1974 .

[10]  Fred Wudl,et al.  Strain and hückel aromaticity: driving forces for a promising new generation of electron acceptors in organic electronics. , 2010, Angewandte Chemie.

[11]  S. C. Nyburg,et al.  Refinement of the α-modification of 9,9'-bifluorenylidene, C26H16, and structure analyses of the β-modification, the 2:1 pyrene complex, 2(C26H16).C16H10, and the 2:1 perylene complex, 2(C26H16).C20H12 , 1985 .

[12]  S. Rondeau‐Gagné,et al.  Synthesis and characterization of a new ethynyl-bridged C60 derivative bearing a diketopyrrolopyrrole moiety , 2011 .

[13]  F. Wudl,et al.  "Deconvoluted fullerene" derivatives: synthesis and characterization. , 2011, Chemistry.

[14]  Thuc‐Quyen Nguyen,et al.  Non‐Basic High‐Performance Molecules for Solution‐Processed Organic Solar Cells , 2012, Advanced materials.

[15]  K. Yager,et al.  Reticulated Organic Photovoltaics , 2012 .

[16]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[17]  Hiroyuki Miyauchi,et al.  A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. , 2011, Journal of the American Chemical Society.

[18]  Thuc‐Quyen Nguyen,et al.  A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells , 2009 .

[19]  Colin Nuckolls,et al.  Reticulated heterojunctions for photovoltaic devices. , 2010, Angewandte Chemie.

[20]  P. Matzinger,et al.  Replacement of disperse anthraquinonedyeS , 2008 .

[21]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[22]  O. Inganäs,et al.  An easily accessible isoindigo-based polymer for high-performance polymer solar cells. , 2011, Journal of the American Chemical Society.

[23]  C. Cooksey Tyrian Purple: 6,6’-Dibromoindigo and Related Compounds , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[24]  He Tian,et al.  Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. , 2012, Chemical communications.

[25]  D. Bethell 105. Kinetics and mechanism of the formation of bifluorenylidene from 9-bromofluorene in t-butyl alcohol , 1963 .

[26]  Mihai Irimia-Vladu,et al.  Indigo and Tyrian Purple – From Ancient Natural Dyes to Modern Organic Semiconductors , 2012 .

[27]  H. Sirringhaus,et al.  A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. , 2012, Chemical communications.

[28]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[29]  T. Lei,et al.  Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors: Design Strategy and Impact of Polymer Symmetry and Backbone Curvature , 2012 .

[30]  N. Mills,et al.  Dications of benzylidenefluorene and diphenylmethylidene fluorene: the relationship between magnetic and energetic measures of antiaromaticity. , 2011, The Journal of organic chemistry.

[31]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[32]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[33]  O. Inganäs,et al.  An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. , 2011, Chemical communications.

[34]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[35]  Kai A. I. Zhang,et al.  Low-Bandgap Benzodifuranone-Based Polymers , 2011 .

[36]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[37]  Claire H. Woo,et al.  Incorporation of furan into low band-gap polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[38]  Yongfang Li,et al.  Small molecule semiconductors for high-efficiency organic photovoltaics. , 2012, Chemical Society reviews.

[39]  Tao Jia,et al.  Nitrile‐Substituted QA Derivatives: New Acceptor Materials for Solution‐Processable Organic Bulk Heterojunction Solar Cells , 2011 .

[40]  Mihai Irimia-Vladu,et al.  Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits , 2012, Advanced materials.

[41]  Thuc‐Quyen Nguyen,et al.  A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells , 2008 .

[42]  J. L. Carey,et al.  The synthesis of quinodimethanes in the benzodifuranone and benzodipyrrolidone series , 1980 .

[43]  Andrés J. García,et al.  Electron injection barrier reduction for organic light-emitting devices by quinacridone derivatives. , 2010, Chemical communications.

[44]  Yi Liu,et al.  Diketopyrrolopyrrole-containing oligothiophene-fullerene triads and their use in organic solar cells. , 2011, ACS applied materials & interfaces.

[45]  Claire H. Woo,et al.  Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly , 2011, Advanced materials.

[46]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[47]  M. Chabinyc,et al.  Recent progress in the morphology of bulk heterojunction photovoltaics , 2011 .

[48]  S. Bauer,et al.  Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple , 2011 .

[49]  A. Heeger,et al.  Quinacridone‐Based Electron Transport Layers for Enhanced Performance in Bulk‐Heterojunction Solar Cells , 2011 .

[50]  P. Friedländer Über den Farbstoff des antiken Purpurs aus murex brandaris , 1909 .

[51]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[52]  Jianguo Mei,et al.  Improved Performance of Molecular Bulk‐Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives , 2012 .