Natural expansion of the genetic code.

At the time of its discovery four decades ago, the genetic code was viewed as the result of a "frozen accident." Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.

[1]  D. Söll,et al.  The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. , 2004, European journal of biochemistry.

[2]  R. Giegé,et al.  Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA. , 2004, Nucleic acids research.

[3]  Dieter Soil Enter a new amino acid , 1988 .

[4]  D. Söll,et al.  Differential Modes of Transfer RNASer Recognition in Methanosarcina barkeri* , 2004, Journal of Biological Chemistry.

[5]  A. Lohse,et al.  A bioinformatical approach suggests the function of the autoimmune hepatitis target antigen soluble liver antigen/liver pancreas , 2001, Hepatology.

[6]  A. Böck,et al.  Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii. , 2000, Journal of molecular biology.

[7]  J. Gallucci,et al.  Reactivity and chemical synthesis of L-pyrrolysine- the 22(nd) genetically encoded amino acid. , 2004, Chemistry & biology.

[8]  I. Anderson,et al.  Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  David G. Longstaff,et al.  Direct charging of tRNACUA with pyrrolysine in vitro and in vivo , 2004, Nature.

[10]  G. Kryukov,et al.  Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Osawa,et al.  Recent evidence for evolution of the genetic code , 1992, Microbiological reviews.

[12]  H. Khorana,et al.  Specificity of sRNA for recognition of codons as studied by the ribosomal binding technique. , 1966, Journal of molecular biology.

[13]  M. Rodnina,et al.  Structural and functional investigation of a putative archaeal selenocysteine synthase. , 2005, Biochemistry.

[14]  August Böck,et al.  Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein , 1989, Nature.

[15]  D. Kern,et al.  tRNA glycylation system from Thermus thermophilus. tRNAGly identity and functional interrelation with the glycylation systems from other phylae. , 1999, Biochemistry.

[16]  O. Namy,et al.  Reprogrammed genetic decoding in cellular gene expression. , 2004, Molecular cell.

[17]  J. Yates,et al.  RNA-Dependent Cysteine Biosynthesis in Archaea , 2005, Science.

[18]  P. Christen,et al.  Bacterial selenocysteine synthase--structural and functional properties. , 1998, European journal of biochemistry.

[19]  J. Harney,et al.  Supramolecular Complexes Mediate Selenocysteine Incorporation In Vivo , 2006, Molecular and Cellular Biology.

[20]  M. Ehrenberg,et al.  Termination of translation: interplay of mRNA, rRNAs and release factors? , 2003, The EMBO journal.

[21]  M. Zhang,et al.  Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. , 2004, Biochemistry.

[22]  P. Agris Decoding the genome: a modified view. , 2004, Nucleic acids research.

[23]  M. Rayman,et al.  The importance of selenium to human health , 2000, The Lancet.

[24]  O. Nureki,et al.  Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases. , 2003, Molecular cell.

[25]  Paul F Agris,et al.  The role of modifications in codon discrimination by tRNALysUUU , 2004, Nature Structural &Molecular Biology.

[26]  D. Söll,et al.  Cysteinyl‐tRNA formation: the last puzzle of aminoacyl‐tRNA synthesis , 1999, FEBS letters.

[27]  D. Söll,et al.  An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Dean,et al.  Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. , 1997, The Biochemical journal.

[29]  E. Sontheimer,et al.  Autoantibodies against a serine tRNA-protein complex implicated in cotranslational selenocysteine insertion. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[30]  U. RajBhandary,et al.  Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Francis Crick,et al.  Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of Molecular Biology.

[32]  D. Söll,et al.  Pyrrolysine analogues as substrates for pyrrolysyl‐tRNA synthetase , 2006, FEBS letters.

[33]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[34]  P. Mäenpää,et al.  A specific hepatic transfer RNA for phosphoserine. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Gross,et al.  The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner. , 1993, Nucleic acids research.

[36]  R. Giegé,et al.  Evidence for the existence in mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into proteins. , 2005, Biochimie.

[37]  A. Schneider,et al.  Trypanosoma Seryl-tRNA Synthetase Is a Metazoan-like Enzyme with High Affinity for tRNASec* , 2006, Journal of Biological Chemistry.

[38]  T Suzuki,et al.  The 'polysemous' codon--a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. , 1997, The EMBO journal.

[39]  D. Söll,et al.  Protein Synthesis in Escherichia coli with Mischarged tRNA , 2003, Journal of bacteriology.

[40]  M Yarus,et al.  Translational efficiency of transfer RNA's: uses of an extended anticodon. , 1982, Science.

[41]  C R Woese,et al.  Evolution of the genetic code , 1973, The Science of Nature.

[42]  R. Furter Expansion of the genetic code: Site‐directed p‐fluoro‐phenylalanine incorporation in Escherichia coli , 1998, Protein science : a publication of the Protein Society.

[43]  A. Böck,et al.  Occurrence in vivo of selenocysteyl-tRNA(SERUCA) in Escherichia coli. Effect of sel mutations. , 1989, The Journal of biological chemistry.

[44]  T. Stewart,et al.  The characterization of phosphoseryl tRNA from lactating bovine mammary gland. , 1977, Nucleic acids research.

[45]  S. Mischke,et al.  Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. , 1992, Biochemical and biophysical research communications.

[46]  S Cusack Aminoacyl-tRNA synthetases. , 1997, Current opinion in structural biology.

[47]  J. Krzycki,et al.  The Residue Mass of L-Pyrrolysine in Three Distinct Methylamine Methyltransferases* , 2005, Journal of Biological Chemistry.

[48]  A. Krol,et al.  Selenoprotein synthesis: UGA does not end the story. , 2006, Biochimie.

[49]  R. Guigó,et al.  Characterization of Mammalian Selenoproteomes , 2003, Science.

[50]  K. Watanabe,et al.  7-Methylguanosine at the anticodon wobble position of squid mitochondrial tRNA(Ser)GCU: molecular basis for assignment of AGA/AGG codons as serine in invertebrate mitochondria. , 1998, Biochimica et biophysica acta.

[51]  D. Söll,et al.  Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli , 1988, Microbiological reviews.

[52]  Toshihiro Obata,et al.  A Novel Eukaryotic Selenoprotein in the Haptophyte Alga Emiliania huxleyi* , 2005, Journal of Biological Chemistry.

[53]  J. Bono,et al.  Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Andrew B. Martin,et al.  Generation of a bacterium with a 21 amino acid genetic code. , 2003, Journal of the American Chemical Society.

[55]  F Wold,et al.  Posttranslational covalent modification of proteins. , 1977, Science.

[56]  Joseph A. Krzycki,et al.  Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA , 2002, Science.

[57]  Yan Zhang,et al.  Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues , 2006, Genome Biology.

[58]  N. Goldenfeld,et al.  Collective evolution and the genetic code. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Yan Zhang,et al.  Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies* , 2005, Journal of Biological Chemistry.

[60]  Mutagenesis of selC, the gene for the selenocysteine-inserting tRNA-species in E. coli: effects on in vivo function. , 1990, Nucleic acids research.

[61]  R. Giegé,et al.  Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. , 1998, European journal of biochemistry.

[62]  C. James,et al.  A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase , 2002, Science.

[63]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[64]  Manuel A. S. Santos,et al.  Evolution of the genetic code in yeasts , 2006, Yeast.

[65]  D. Söll,et al.  Emergence of the universal genetic code imprinted in an RNA record , 2006, Proceedings of the National Academy of Sciences.

[66]  N. Copeland,et al.  Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[67]  K. Standing,et al.  A Selenoprotein in the Plant Kingdom , 2002, The Journal of Biological Chemistry.

[68]  F. Crick Origin of the Genetic Code , 1967, Nature.

[69]  D. Söll,et al.  The selenocysteine-inserting opal suppressor serine tRNA from E. coli is highly unusual in structure and modification. , 1989, Nucleic acids research.

[70]  K. Forchhammer,et al.  Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu from E.coli. , 1990, Nucleic acids research.

[71]  J. Krzycki Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. , 2004, Current opinion in chemical biology.

[72]  T. Stadtman,et al.  Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[73]  W. Whitman,et al.  Diversity and Taxonomy of Methanogens , 1993 .

[74]  Manuel A. S. Santos,et al.  Driving change: the evolution of alternative genetic codes. , 2004, Trends in genetics : TIG.

[75]  P. Carbon,et al.  Selenocysteylation in Eukaryotes Necessitates the Uniquely Long Aminoacyl Acceptor Stem of Selenocysteine tRNASec(*) , 1995, The Journal of Biological Chemistry.

[76]  Elias S. J. Arnér,et al.  Selenocysteine in proteins-properties and biotechnological use. , 2005, Biochimica et biophysica acta.

[77]  Dieter Söll,et al.  RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea , 2006, Proceedings of the National Academy of Sciences.

[78]  Peter G. Schultz,et al.  Expanding the genetic code. , 2006 .

[79]  G. Kryukov,et al.  The prokaryotic selenoproteome , 2004, EMBO reports.

[80]  A. Böck,et al.  The function of selenocysteine synthase and SELB in the synthesis and incorporation of selenocysteine. , 1991, Biochimie.

[81]  Dieter Söll,et al.  Aminoacyl-tRNAs: setting the limits of the genetic code. , 2004, Genes & development.

[82]  K. Watanabe,et al.  The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria. , 1999, Nucleic acids research.